univariate polynomials
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 22)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 32 (1) ◽  
Author(s):  
Johanna Lercher ◽  
Hans-Peter Schröcker

AbstractWe consider bivariate polynomials over the skew field of quaternions, where the indeterminates commute with all coefficients and with each other. We analyze existence of univariate factorizations, that is, factorizations with univariate linear factors. A necessary condition for existence of univariate factorizations is factorization of the norm polynomial into a product of univariate polynomials. This condition is, however, not sufficient. Our central result states that univariate factorizations exist after multiplication with a suitable univariate real polynomial as long as the necessary factorization condition is fulfilled. We present an algorithm for computing this real polynomial and a corresponding univariate factorization. If a univariate factorization of the original polynomial exists, a suitable input of the algorithm produces a constant multiplication factor, thus giving an a posteriori condition for existence of univariate factorizations. Some factorizations obtained in this way are of interest in mechanism science. We present an example of a curious closed-loop mechanism with eight revolute joints.


2021 ◽  
Author(s):  
◽  
Amani Ahmed Otaif

<p>The aim of this thesis is to apply the Grünwald–Blaschke kinematic mapping to standard types of parallel general planar three-legged platforms in order to obtain the univariate polynomials which provide the solution of the forward kinematic problem. We rely on the method of Gröbner basis to reach these univariate polynomials. The Gröbner basis is determined from the constraint equations of the three legs of the platforms. The degrees of these polynomials are examined geometrically based on Bezout’s Theorem. The principle conclusion is that the univariate polynomials for the symmetric platforms under circular constraints are of degree six, which describe the maximum number of real solutions. The univariate polynomials for the symmetric platforms under linear constraints are of degree two, that describe the maximum number of real solutions.</p>


2021 ◽  
Author(s):  
◽  
Amani Ahmed Otaif

<p>The aim of this thesis is to apply the Grünwald–Blaschke kinematic mapping to standard types of parallel general planar three-legged platforms in order to obtain the univariate polynomials which provide the solution of the forward kinematic problem. We rely on the method of Gröbner basis to reach these univariate polynomials. The Gröbner basis is determined from the constraint equations of the three legs of the platforms. The degrees of these polynomials are examined geometrically based on Bezout’s Theorem. The principle conclusion is that the univariate polynomials for the symmetric platforms under circular constraints are of degree six, which describe the maximum number of real solutions. The univariate polynomials for the symmetric platforms under linear constraints are of degree two, that describe the maximum number of real solutions.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Wenju Xu ◽  
Baocang Wang ◽  
Rongxing Lu ◽  
Quanbo Qu ◽  
Yange Chen ◽  
...  

Private information retrieval (PIR) protocol is a powerful cryptographic tool and has received considerable attention in recent years as it can not only help users to retrieve the needed data from database servers but also protect them from being known by the servers. Although many PIR protocols have been proposed, it remains an open problem to design an efficient PIR protocol whose communication overhead is irrelevant to the database size N . In this paper, to answer this open problem, we present a new communication-efficient PIR protocol based on our proposed single-ciphertext fully homomorphic encryption (FHE) scheme, which supports unlimited computations with single variable over a single ciphertext even without access to the secret key. Specifically, our proposed PIR protocol is characterized by combining our single-ciphertext FHE with Lagrange interpolating polynomial technique to achieve better communication efficiency. Security analyses show that the proposed PIR protocol can efficiently protect the privacy of the user and the data in the database. In addition, both theoretical analyses and experimental evaluations are conducted, and the results indicate that our proposed PIR protocol is also more efficient and practical than previously reported ones. To the best of our knowledge, our proposed protocol is the first PIR protocol achieving O 1 communication efficiency on the user side, irrelevant to the database size N .


2021 ◽  
Vol 31 (3) ◽  
Author(s):  
Daniel F. Scharler ◽  
Hans-Peter Schröcker

AbstractWe present an algorithm to compute all factorizations into linear factors of univariate polynomials over the split quaternions, provided such a factorization exists. Failure of the algorithm is equivalent to non-factorizability for which we present also geometric interpretations in terms of rulings on the quadric of non-invertible split quaternions. However, suitable real polynomial multiples of split quaternion polynomials can still be factorized and we describe how to find these real polynomials. Split quaternion polynomials describe rational motions in the hyperbolic plane. Factorization with linear factors corresponds to the decomposition of the rational motion into hyperbolic rotations. Since multiplication with a real polynomial does not change the motion, this decomposition is always possible. Some of our ideas can be transferred to the factorization theory of motion polynomials. These are polynomials over the dual quaternions with real norm polynomial and they describe rational motions in Euclidean kinematics. We transfer techniques developed for split quaternions to compute new factorizations of certain dual quaternion polynomials.


Author(s):  
Xialiang Li ◽  
Wei Niu

In this paper, we are concerned with the problem of counting the multiplicities of a zero-dimensional regular set’s zeros. We generalize the squarefree decomposition of univariate polynomials to the so-called pseudo squarefree decomposition of multivariate polynomials, and then propose an algorithm for decomposing a regular set into a finite number of simple sets. From the output of this algorithm, the multiplicities of zeros could be directly read out, and the real solution isolation with multiplicity can also be easily produced. As a main theoretical result of this paper, we analyze the structure of dual space of the saturated ideal generated by a simple set as well as a regular set. Experiments with a preliminary implementation show the efficiency of our method.


Sign in / Sign up

Export Citation Format

Share Document