heisenberg double
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 9)

H-INDEX

5
(FIVE YEARS 1)

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1309
Author(s):  
Jerzy Lukierski

We construct recently introduced palatial NC twistors by considering the pair of conjugated (Born-dual) twist-deformed D=4 quantum inhomogeneous conformal Hopf algebras Uθ(su(2,2)⋉T4) and Uθ¯(su(2,2)⋉T¯4), where T4 describes complex twistor coordinates and T¯4 the conjugated dual twistor momenta. The palatial twistors are suitably chosen as the quantum-covariant modules (NC representations) of the introduced Born-dual Hopf algebras. Subsequently, we introduce the quantum deformations of D=4 Heisenberg-conformal algebra (HCA) su(2,2)⋉Hℏ4,4 (Hℏ4,4=T¯4⋉ℏT4 is the Heisenberg algebra of twistorial oscillators) providing in twistorial framework the basic covariant quantum elementary system. The class of algebras describing deformation of HCA with dimensionfull deformation parameter, linked with Planck length λp, is called the twistorial DSR (TDSR) algebra, following the terminology of DSR algebra in space-time framework. We describe the examples of TDSR algebra linked with Palatial twistors which are introduced by the Drinfeld twist and the quantization map in Hℏ4,4. We also introduce generalized quantum twistorial phase space by considering the Heisenberg double of Hopf algebra Uθ(su(2,2)⋉T4).


Author(s):  
L. Fehér

AbstractWe construct a bi-Hamiltonian structure for the holomorphic spin Sutherland hierarchy based on collective spin variables. The construction relies on Poisson reduction of a bi-Hamiltonian structure on the holomorphic cotangent bundle of $$\mathrm{GL}(n,\mathbb {C})$$ GL ( n , C ) , which itself arises from the canonical symplectic structure and the Poisson structure of the Heisenberg double of the standard $$\mathrm{GL}(n,\mathbb {C})$$ GL ( n , C ) Poisson–Lie group. The previously obtained bi-Hamiltonian structures of the hyperbolic and trigonometric real forms are recovered on real slices of the holomorphic spin Sutherland model.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1055
Author(s):  
Stjepan Meljanac ◽  
Anna Pachoł

A Snyder model generated by the noncommutative coordinates and Lorentz generators closes a Lie algebra. The application of the Heisenberg double construction is investigated for the Snyder coordinates and momenta generators. This leads to the phase space of the Snyder model. Further, the extended Snyder algebra is constructed by using the Lorentz algebra, in one dimension higher. The dual pair of extended Snyder algebra and extended Snyder group is then formulated. Two Heisenberg doubles are considered, one with the conjugate tensorial momenta and another with the Lorentz matrices. Explicit formulae for all Heisenberg doubles are given.


2021 ◽  
Vol 383 (1) ◽  
pp. 345-400
Author(s):  
Alexander Spies

AbstractWe define Poisson-geometric analogues of Kitaev’s lattice models. They are obtained from a Kitaev model on an embedded graph $$\Gamma $$ Γ by replacing its Hopf algebraic data with Poisson data for a Poisson-Lie group G. Each edge is assigned a copy of the Heisenberg double $${\mathcal {H}}(G)$$ H ( G ) . Each vertex (face) of $$\Gamma $$ Γ defines a Poisson action of G (of $$G^*$$ G ∗ ) on the product of these Heisenberg doubles. The actions for a vertex and adjacent face form a Poisson action of the double Poisson-Lie group D(G). We define Poisson counterparts of vertex and face operators and relate them via the Poisson bracket to the vector fields generating the actions of D(G). We construct an isomorphism of Poisson D(G)-spaces between this Poisson-geometrical Kitaev model and Fock and Rosly’s Poisson structure for the graph $$\Gamma $$ Γ and the Poisson-Lie group D(G). This decouples the latter and represents it as a product of Heisenberg doubles. It also relates the Poisson-geometrical Kitaev model to the symplectic structure on the moduli space of flat D(G)-bundles on an oriented surface with boundary constructed from $$\Gamma $$ Γ .


Author(s):  
M. Fairon ◽  
L. Fehér ◽  
I. Marshall

AbstractWe investigate the trigonometric real form of the spin Ruijsenaars–Schneider system introduced, at the level of equations of motion, by Krichever and Zabrodin in 1995. This pioneering work and all earlier studies of the Hamiltonian interpretation of the system were performed in complex holomorphic settings; understanding the real forms is a non-trivial problem. We explain that the trigonometric real form emerges from Hamiltonian reduction of an obviously integrable ‘free’ system carried by a spin extension of the Heisenberg double of the $${\mathrm{U}}(n)$$ U ( n ) Poisson–Lie group. The Poisson structure on the unreduced real phase space $${\mathrm{GL}}(n,{\mathbb {C}})\times {\mathbb {C}}^{nd}$$ GL ( n , C ) × C nd is the direct product of that of the Heisenberg double and $$d\ge 2$$ d ≥ 2 copies of a $${\mathrm{U}}(n)$$ U ( n ) covariant Poisson structure on $${\mathbb {C}}^n \simeq {\mathbb {R}}^{2n}$$ C n ≃ R 2 n found by Zakrzewski, also in 1995. We reduce by fixing a group valued moment map to a multiple of the identity and analyze the resulting reduced system in detail. In particular, we derive on the reduced phase space the Hamiltonian structure of the trigonometric spin Ruijsenaars–Schneider system and we prove its degenerate integrability.


Sign in / Sign up

Export Citation Format

Share Document