emissive layer
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 59)

H-INDEX

24
(FIVE YEARS 7)

Author(s):  
Dhruvajyoti Barah ◽  
Subhamoy Sahoo ◽  
Naga Sai Manoj Inaganti ◽  
Haripriya Kesavan ◽  
Jayeeta Bhattacharyya ◽  
...  

Abstract 4,4′-bis[(N-carbazole) styryl] biphenyl (BSB4 or BSBCz) is one of the widely studied organic fluorescent materials for blue organic electroluminescent devices in the recent times. In this work, BSB4 is used as a guest material to construct the host-guest matrix for the emissive layer (EML) of a pure blue fluorescent organic light-emitting diode (OLED). A pure blue emission suitable for display application with a Commission Internationale de l’Eclairage (CIE) coordinate of (0.147, 0.070) is achieved by the blue-shift of the emission spectrum of the host-guest matrix from that of the pristine guest (BSB4) molecules. The optimization of OLED structures is carried out by considering (i) charge balance in the emissive layer for high exciton density, and (ii) optical interference of generated light in the organic layers for increased light outcoupling. A thorough comparative study on the use of different combinations of widely used hole and electron transport layers to obtain charge balance in the EML of the OLED, thereby enhancing the external quantum efficiency (EQE) is shown. Optical interference effects in the fabricated OLEDs are analyzed by optical simulation of each device structure by transfer matrix method (TMM). With the optimized device structures, we are able to overcome the 2% EQE limit that has been reported so far for blue fluorescent OLEDs with BSB4 as light emitting material and achieve a maximum EQE of 4.08%, which is near to the theoretical limit of EQE for fluorescent OLEDs.


2021 ◽  
Author(s):  
◽  
Rebecca Jane Sutton

<p>Organic light emitting diodes (OLEDs) are an emerging technology based on electrically conducting polymer films, with great promise for large area lighting and flexible ultra-thin displays. However, despite the rapid technological development, there is still a poor understanding of the degradation and spindependent recombination processes that take place inside an OLED. In this thesis, Electron Paramagnetic Resonance (EPR) was used to investigate these processes in blue-emitting OLEDs.  A successful procedure was developed and refined for fabricating OLEDs with the structure ITO/PEDOT:PSS/emissive layer/Al/Ag, with and without the PEDOT:PSS hole-transporting layer. The organic emissive layer was either F8BT, PFO, or PVK:OXD-7:FIrpic (PB). These OLEDs were fabricated in air and with a geometry optimised for EPR experiments. Critical features for satisfactory devices were found to be a sufficiently thick organic layer and minimal exposure to the air.  A compact apparatus was developed for simultaneous light output, current, and voltage measurements on the OLEDs while in an inert glove box environment. Electroluminescence and current-voltage parameters measured for these devices showed predominantly trap-controlled space-charge-limited conduction.   OLEDs with PFO as the emissive layer and with a PEDOT:PSS layer were investigated with conventional, electrically-detected (ED) and optically-detected (OD) EPR techniques. EDEPR and ODEPR signals were observed at ~9.2 GHz and in the low (<50 mT) and high (~330 mT) magnetic field regimes and were found to change markedly with time during operation as the device degraded. The low field signals initially showed a composite broad quenching and superimposed narrow enhancing response centred around zero field strength. These signals were attributed to magneto-resistance (MR) and magneto-electroluminescence (MEL). Following operational ageing, a third, narrow quenching line was observed in the MR and the ratio of the initial two MR responses changed substantially. These effects are tentatively attributed to a hyperfine interaction.  For both EDEPR and ODEPR, quenching high field resonances with a g-value (gyromagnetic ratio) of 2.003±0.001 were observed. The current-quenching resonance gradually diminished during operation and after 4–5 hours was replaced by a current-enhancing resonance. The appearance of this latter resonance could be explained by chemical changes in the OLED due to the diffusion of oxygen through the device from the oxygen-plasma-treated ITO. A working model is proposed which can explain this observed change as spindependent trapping and recombination at free radicals, although the model requires further experimentation to test its validity.</p>


2021 ◽  
Author(s):  
◽  
Rebecca Jane Sutton

<p>Organic light emitting diodes (OLEDs) are an emerging technology based on electrically conducting polymer films, with great promise for large area lighting and flexible ultra-thin displays. However, despite the rapid technological development, there is still a poor understanding of the degradation and spindependent recombination processes that take place inside an OLED. In this thesis, Electron Paramagnetic Resonance (EPR) was used to investigate these processes in blue-emitting OLEDs.  A successful procedure was developed and refined for fabricating OLEDs with the structure ITO/PEDOT:PSS/emissive layer/Al/Ag, with and without the PEDOT:PSS hole-transporting layer. The organic emissive layer was either F8BT, PFO, or PVK:OXD-7:FIrpic (PB). These OLEDs were fabricated in air and with a geometry optimised for EPR experiments. Critical features for satisfactory devices were found to be a sufficiently thick organic layer and minimal exposure to the air.  A compact apparatus was developed for simultaneous light output, current, and voltage measurements on the OLEDs while in an inert glove box environment. Electroluminescence and current-voltage parameters measured for these devices showed predominantly trap-controlled space-charge-limited conduction.   OLEDs with PFO as the emissive layer and with a PEDOT:PSS layer were investigated with conventional, electrically-detected (ED) and optically-detected (OD) EPR techniques. EDEPR and ODEPR signals were observed at ~9.2 GHz and in the low (<50 mT) and high (~330 mT) magnetic field regimes and were found to change markedly with time during operation as the device degraded. The low field signals initially showed a composite broad quenching and superimposed narrow enhancing response centred around zero field strength. These signals were attributed to magneto-resistance (MR) and magneto-electroluminescence (MEL). Following operational ageing, a third, narrow quenching line was observed in the MR and the ratio of the initial two MR responses changed substantially. These effects are tentatively attributed to a hyperfine interaction.  For both EDEPR and ODEPR, quenching high field resonances with a g-value (gyromagnetic ratio) of 2.003±0.001 were observed. The current-quenching resonance gradually diminished during operation and after 4–5 hours was replaced by a current-enhancing resonance. The appearance of this latter resonance could be explained by chemical changes in the OLED due to the diffusion of oxygen through the device from the oxygen-plasma-treated ITO. A working model is proposed which can explain this observed change as spindependent trapping and recombination at free radicals, although the model requires further experimentation to test its validity.</p>


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Hengyang Xiang ◽  
Run Wang ◽  
Jiawei Chen ◽  
Fushan Li ◽  
Haibo Zeng

AbstractCarbon neutrality, energy savings, and lighting costs and quality have always led to urgent demand for lighting technology innovation. White light-emitting diodes (WLEDs) based on a single emissive layer (SEL) fabricated by the solution method have been continuously researched in recent years; they are advantageous because they have a low cost and are ultrathin and flexible. Here, we reviewed the history and development of SEL–WLEDs over recent years to provide inspiration and promote their progress in lighting applications. We first introduced the emitters and analysed the advantages of these emitters in creating SEL–WLEDs and then reviewed some cases that involve the above emitters, which were formed via vacuum thermal evaporation or solution processes. Some notable developments that deserve attention are highlighted in this review due to their potential use in SEL–WLEDs, such as perovskite materials. Finally, we looked at future development trends of SEL–WLEDs and proposed potential research directions.


Author(s):  
Pezhman Sheykholeslami-Nasab ◽  
Mahdi Davoudi-Darareh ◽  
Mohammad Hassan Yousefi

In this study, a model for numerical simulation of carrier transport mechanism in the hybrid quantum dot light-emitting diodes (QD-LEDs) is presented. The carrier mobility in the polymer layer doped with quantum dots (QDs) was calculated by a proposed hopping mobility, which is a concentration-dependent mobility model based on the Gaussian distribution of density-of-states and the effective transport energy models. A QD-LED structure based on PVK:CdSe-QDs blend as the emissive layer with different QD concentrations were fabricated and their current density versus voltage (J-V) characteristic were measured. The numerical results were compared with experimental data, which indicates the ability of the proposed mobility model to describe the general trend of the electrical characteristics of the devices. Then, the exciton density profiles of the devices were extracted based on the continuity equation for singlet and triplet excitons, and the corresponding luminance characteristics of the devices were calculated. The results of the electrical and optical characteristics show that there is an optimal concentration for the QDs in the emissive layer of the QD-LEDs.


Sign in / Sign up

Export Citation Format

Share Document