whole genome duplication event
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 1)

GigaScience ◽  
2021 ◽  
Vol 10 (5) ◽  
Author(s):  
José Ramón Pardos-Blas ◽  
Iker Irisarri ◽  
Samuel Abalde ◽  
Carlos M L Afonso ◽  
Manuel J Tenorio ◽  
...  

Abstract Background Venoms are deadly weapons to subdue prey or deter predators that have evolved independently in many animal lineages. The genomes of venomous animals are essential to understand the evolutionary mechanisms involved in the origin and diversification of venoms. Results Here, we report the chromosome-level genome of the venomous Mediterranean cone snail, Lautoconus ventricosus (Caenogastropoda: Conidae). The total size of the assembly is 3.59 Gb; it has high contiguity (N50 = 93.53 Mb) and 86.6 Mb of the genome assembled into the 35 largest scaffolds or pseudochromosomes. On the basis of venom gland transcriptomes, we annotated 262 complete genes encoding conotoxin precursors, hormones, and other venom-related proteins. These genes were scattered in the different pseudochromosomes and located within repetitive regions. The genes encoding conotoxin precursors were normally structured into 3 exons, which did not necessarily coincide with the 3 structural domains of the corresponding proteins. Additionally, we found evidence in the L. ventricosus genome for a past whole-genome duplication event by means of conserved gene synteny with the Pomacea canaliculata genome, the only one available at the chromosome level within Caenogastropoda. The whole-genome duplication event was further confirmed by the presence of a duplicated hox gene cluster. Key genes for gastropod biology including those encoding proteins related to development, shell formation, and sex were located in the genome. Conclusions The new high-quality L. ventricosus genome should become a reference for assembling and analyzing new gastropod genomes and will contribute to future evolutionary genomic studies among venomous animals.


GigaScience ◽  
2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Zheng Fan ◽  
Tao Yuan ◽  
Piao Liu ◽  
Lu-Yu Wang ◽  
Jian-Feng Jin ◽  
...  

Abstract Background The spider Trichonephila antipodiana (Araneidae), commonly known as the batik golden web spider, preys on arthropods with body sizes ranging from ∼2 mm in length to insects larger than itself (>20‒50 mm), indicating its polyphagy and strong dietary detoxification abilities. Although it has been reported that an ancient whole-genome duplication event occurred in spiders, lack of a high-quality genome has limited characterization of this event. Results We present a chromosome-level T. antipodiana genome constructed on the basis of PacBio and Hi-C sequencing. The assembled genome is 2.29 Gb in size with a scaffold N50 of 172.89 Mb. Hi-C scaffolding assigned 98.5% of the bases to 13 pseudo-chromosomes, and BUSCO completeness analysis revealed that the assembly included 94.8% of the complete arthropod universal single-copy orthologs (n = 1,066). Repetitive elements account for 59.21% of the genome. We predicted 19,001 protein-coding genes, of which 96.78% were supported by transcriptome-based evidence and 96.32% matched protein records in the UniProt database. The genome also shows substantial expansions in several detoxification-associated gene families, including cytochrome P450 mono-oxygenases, carboxyl/cholinesterases, glutathione-S-transferases, and ATP-binding cassette transporters, reflecting the possible genomic basis of polyphagy. Further analysis of the T. antipodiana genome architecture reveals an ancient whole-genome duplication event, based on 2 lines of evidence: (i) large-scale duplications from inter-chromosome synteny analysis and (ii) duplicated clusters of Hox genes. Conclusions The high-quality T. antipodiana genome represents a valuable resource for spider research and provides insights into this species’ adaptation to the environment.


2016 ◽  
Author(s):  
Alex Harkess ◽  
Francesco Mercati ◽  
Loredana Abbate ◽  
Michael McKain ◽  
J. Chris Pires ◽  
...  

AbstractCurrent phylogenetic sampling reveals that dioecy and an XY sex chromosome pair evolved once or possibly twice in the genus Asparagus. Although there appear to be some lineage-specific polyploidization events, the base chromosome number of 2n=2x=20 is relatively conserved across the Asparagus genus. Regardless, dioecious species tend to have larger genomes than hermaphroditic species. Here we test whether this genome size expansion in dioecious species is related to a polyploidization and subsequent chromosome fusion or retrotransposon proliferation in dioecious species. We first estimate genome sizes or use published values for four hermaphrodites and four dioecious species distributed across the phylogeny and show that dioecious species typically have larger genomes than hermaphroditic species. Utilizing a phylogenomic approach we find no evidence for ancient polyploidization contributing to increased genome sizes of sampled dioecious species. We do find support for an ancient whole genome duplication event predating the diversification of the Asparagus genus. Repetitive DNA content of the four hermaphroditic and four dioecious species was characterized based on randomly sampled whole genome shotgun sequencing and common elements were annotated. Across our broad phylogenetic sampling, Ty-1 Copia retroelements in particular have undergone a marked proliferation in dioecious species. In the absence of a detectable whole genome duplication event, retrotransposon proliferation is the most likely explanation for the precipitous increase in genome size in dioecious Asparagus species.


2010 ◽  
Vol 6 (11) ◽  
pp. 2305 ◽  
Author(s):  
Luigi Grassi ◽  
Diana Fusco ◽  
Alessandro Sellerio ◽  
Davide Corà ◽  
Bruno Bassetti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document