plant mitochondrial dna
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 0)

H-INDEX

13
(FIVE YEARS 0)

Plants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 533 ◽  
Author(s):  
Brieba

Plants are sessile organisms, and their DNA is particularly exposed to damaging agents. The integrity of plant mitochondrial and plastid genomes is necessary for cell survival. During evolution, plants have evolved mechanisms to replicate their mitochondrial genomes while minimizing the effects of DNA damaging agents. The recombinogenic character of plant mitochondrial DNA, absence of defined origins of replication, and its linear structure suggest that mitochondrial DNA replication is achieved by a recombination-dependent replication mechanism. Here, I review the mitochondrial proteins possibly involved in mitochondrial DNA replication from a structural point of view. A revision of these proteins supports the idea that mitochondrial DNA replication could be replicated by several processes. The analysis indicates that DNA replication in plant mitochondria could be achieved by a recombination-dependent replication mechanism, but also by a replisome in which primers are synthesized by three different enzymes: Mitochondrial RNA polymerase, Primase-Helicase, and Primase-Polymerase. The recombination-dependent replication model and primers synthesized by the Primase-Polymerase may be responsible for the presence of genomic rearrangements in plant mitochondria.



PLoS Genetics ◽  
2019 ◽  
Vol 15 (8) ◽  
pp. e1008373 ◽  
Author(s):  
Alexander Kozik ◽  
Beth A. Rowan ◽  
Dean Lavelle ◽  
Lidija Berke ◽  
M. Eric Schranz ◽  
...  


2019 ◽  
Author(s):  
Alexander Kozik ◽  
Beth A. Rowan ◽  
Dean Lavelle ◽  
Lidija Berke ◽  
M. Eric Schranz ◽  
...  

ABSTRACTPlant mitochondrial genomes are usually assembled and displayed as circular maps based on the widely-held assumption that circular genome molecules are the primary form of mitochondrial DNA, despite evidence to the contrary. Many plant mitochondrial genomes have one or more pairs of large repeats that can act as sites for inter- or intramolecular recombination, leading to multiple alternative genomic arrangements (isoforms). Most mitochondrial genomes have been assembled using methods that were unable to capture the complete spectrum of isoforms within a species, leading to an incomplete inference of their structure and recombinational activity. To document and investigate underlying reasons for structural diversity in plant mitochondrial DNA, we used long-read (PacBio) and short-read (Illumina) sequencing data to assemble and compare mitochondrial genomes of domesticated (Lactuca sativa) and wild (L. saligna and L. serriola) lettuce species. This allowed us to characterize a comprehensive, complex set of isoforms within each species and to compare genome structures between species. Physical analysis of L. sativa mtDNA molecules by fluorescence microscopy revealed a variety of linear, branched linear, and circular structures. The mitochondrial genomes for L. sativa and L. serriola were identical in sequence and arrangement, and differed substantially from L. saligna, indicating that the mitochondrial genome structure did not change during domestication. From the isoforms evident in our data, we inferred that recombination occurs at repeats of all sizes at variable frequencies. The differences in genome structure between L. saligna and the two other lettuce species can be largely explained by rare recombination events that rearrange the structure. Our data demonstrate that representations of plant mitochondrial DNA as simple, genome-sized circular molecules are not accurate descriptions of their true nature and that in reality plant mitochondrial DNA is a complex, dynamic mixture of forms.Data AvailabilityBioProject: Organellar genomes of cultivated and wild lettuce (Lactuca) varieties PRJNA508811 https://www.ncbi.nlm.nih.gov/bioproject/508811 and other accessions as indicated through the text and supplemental data.FundingNSF grant MCB-1413152 to ACC and support from UC Davis to RWM.



10.2741/4531 ◽  
2017 ◽  
Vol 22 (6) ◽  
pp. 1023-1032 ◽  
Author(s):  
Brent L Nielsen






Sign in / Sign up

Export Citation Format

Share Document