damper winding
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 12)

H-INDEX

9
(FIVE YEARS 1)

Author(s):  
Allan De Barros ◽  
Ivan Chabu

Purpose This paper aims to develop models and simulations focused on the prediction of electromagnetic forces acting on the stator core of a synchronous machine. It contributes to the study of stator core vibrations. Design/methodology/approach An analytical model based on the rotating fields’ theory including the damper winding contribution was developed. Such model allows the comprehension of airgap magnetic field distribution and the consequent pressure distribution. Focus was given to the pressure sub-harmonics due to the usual fractional winding configuration of low speed machines. A comparative numerical model was also developed and applied to an example laboratory machine. Partial validation measurements were performed. Findings The paper provides the predicted electromagnetic forces and the relative influences of damper winding and teeth tangential forces on each pressure harmonic. It is shown by how much such effects can influence the amplitude of pressure sub-harmonics from a fractional stator winding. Research limitations/implications The performed validation measurements were based on the airgap field distribution, but the resulting core vibration at load was not measured. Therefore, researchers are encouraged to perform additional tests for improved validation. Practical implications The obtained models and results are of great importance for the design phase of new generators and for the diagnosis process of existing machines with core vibration problems. Originality/value As a contribution of this paper, the magnitude of indirect effect of tangential forces and the effect of damper winding are comparatively quantified for each pressure harmonic. The given approach contributes to the relative evaluation of these effects especially on the sub-harmonics from the fractional stator winding.


2019 ◽  
Vol 90 (8) ◽  
pp. 565-569 ◽  
Author(s):  
A. A. Afanasiev ◽  
A. Yu. Afanasiev

Author(s):  
Gregory Bauw ◽  
Bertrand Cassoret ◽  
Olivier Ninet ◽  
Raphael Romary

Purpose The purpose of this paper is to present a design method for induction machines including a three-phase damper winding for noise and vibrations reduction. Design/methodology/approach In the first part, the principle of the damper winding is recalled. The second part presents the iterative design method which is applied on a 4-kW pulse width modulation (PWM)-fed induction machine to study the impact of the additional winding on the geometry. In the third part, the finite-element method is used to validate the designed geometry and highlight the harmonic flux density reduction. Finally, some experimental results are given. Findings The study shows that the impact of the additional three-phase winding on the geometry and weight of the machine is low. Moreover, the proposed noise reduction method allows one to reduce the total noise level of a PWM-fed induction machine up to 8.5 dBA. Originality/value The originality of the paper concerns the design and characterization of a three-phase damper winding for a noiseless induction machine. The principle of this proposed noise reduction method is new and has been patented.


Sign in / Sign up

Export Citation Format

Share Document