incomplete lu factorization
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 6)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Mohamed Abdelsabour Fahmy

The main purpose of this chapter is to propose a novel boundary element modeling and simulation algorithm for solving fractional bio-thermomechanical problems in anisotropic soft tissues. The governing equations are studied on the basis of the thermal wave model of bio-heat transfer (TWMBT) and Biot’s theory. These governing equations are solved using the boundary element method (BEM), which is a flexible and effective approach since it deals with more complex shapes of soft tissues and does not need the internal domain to be discretized, also, it has low RAM and CPU usage. The transpose-free quasi-minimal residual (TFQMR) solver are implemented with a dual-threshold incomplete LU factorization technique (ILUT) preconditioner to solve the linear systems arising from BEM. Numerical findings are depicted graphically to illustrate the influence of fractional order parameter on the problem variables and confirm the validity, efficiency and accuracy of the proposed BEM technique.


2020 ◽  
Vol 28 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Kirill V. Demyanko ◽  
Igor E. Kaporin ◽  
Yuri M. Nechepurenko

AbstractThe inexact Newton method developed earlier for computing deflating subspaces associated with separated groups of finite eigenvalues of regular linear large sparse non-Hermitian matrix pencils is specialized to solve eigenproblems arising in the hydrodynamic temporal stability analysis. To this end, for linear systems to be solved at each step of the Newton method, a new efficient MLILU2 preconditioner based on the multilevel 2nd order incomplete LU-factorization is proposed. A special variant of Krylov subspace method IDR2 with right preconditioning is developed. In comparison with GMRES it requires much smaller workspace while may converge considerably faster than BiCGStab. The effectiveness of the proposed methods is illustrated with matrix pencils of order up to 3.1 ⋅ 106 arising in the temporal linear stability analysis of a typical hydrodinamic flow.


Author(s):  
A. U. Prakonina

The influence of the spectrum of original and preconditioned matrices on a convergence rate of iterative methods for solving systems of finite-difference equations applicable to two-dimensional elliptic equations with mixed derivatives is investigated. It is shown that the efficiency of the bi-conjugate gradient iterative methods for systems with asymmetric matrices significantly depends not only on the matrix spectrum boundaries, but also on the heterogeneity of the distribution of the spectrum components, as well as on the magnitude of the imaginary part of complex eigenvalues. For test matrices with a fixed condition number, three variants of the spectral distribution were studied and the dependences of the number of iterations on the dimension of matrices were estimated. It is shown that the non-uniformity in the eigenvalue distribution within the fixed spectrum boundaries leads to a significant increase in the number of iterations with increasing dimension of the matrices. The increasing imaginary part of the eigenvalues has a similar effect on the convergence rate. Using as an example the model potential distribution problem in a square domain, including anisotropic ring inhomogeneity, a comparative analysis of the matrix structure and the convergence rate of the bi-conjugate gradient method with Fourier – Jacobi and incomplete LU factorization preconditioners is performed. It is shown that the advantages of the Fourier – Jacobi preconditioner are associated with a more uniform distribution of the spectrum of the preconditioned matrix along the real axis and a better suppression of the imaginary part of the spectrum compared to the preconditioner based on the incomplete LU factorization.


Author(s):  
V. M. Volkov ◽  
A. U. Prakonina

Finite difference schemes and iterative methods of solving anisotropic diffusion problems governing multidimensional elliptic PDE with mixed derivatives are considered. By the example of the test problem with discontinuous coefficients, it is shown that the spectral characteristics of the finite difference problem and the efficiency of their preconditioning depend on the mixed derivatives approximation method. On the basis of the comparative numerical analysis, the most adequate approximation formulas for the mixed derivatives providing a maximum convergence rate of the bi-conjugate gradients method with the incomplete LU factorization and the Fourier – Jacobi preconditioners are discovered. It is shown that the monotonicity of the finite difference scheme does not guarantee advantages at their iterative implementation. Moreover, the grid maximum principle is not provided under the conditions of essential anisotropy.


2018 ◽  
Vol 10 (10) ◽  
pp. 1850108 ◽  
Author(s):  
Mohamed Abdelsabour Fahmy

The main aim of this paper is to propose a new boundary element algorithm for describing thermomechanical interactions in anisotropic soft tissues. The governing equations are studied based on the dual-phase lag bioheat transfer and Biot’s theory. Due to the advantages of convolution quadrature boundary element method (CQBEM), such as low CPU usage, low memory usage and suitability for treatment of soft tissues that have complex shapes, it is a versatile and powerful method for modeling of bioheat distribution in anisotropic soft tissues and the related deformation. The resulting linear systems for bioheat and mechanical equations are solved by Transpose-free quasi-minimal residual (TFQMR) solver with a dual-threshold incomplete LU factorization technique (ILUT) preconditioner that reduces the iterations number and total CPU time. Numerical results demonstrate the validity, efficiency and accuracy of the proposed algorithm and technique.


Sign in / Sign up

Export Citation Format

Share Document