scholarly journals Spectral properties of discrete models of multi-dimensional elliptic problems with mixed derivatives

Author(s):  
A. U. Prakonina

The influence of the spectrum of original and preconditioned matrices on a convergence rate of iterative methods for solving systems of finite-difference equations applicable to two-dimensional elliptic equations with mixed derivatives is investigated. It is shown that the efficiency of the bi-conjugate gradient iterative methods for systems with asymmetric matrices significantly depends not only on the matrix spectrum boundaries, but also on the heterogeneity of the distribution of the spectrum components, as well as on the magnitude of the imaginary part of complex eigenvalues. For test matrices with a fixed condition number, three variants of the spectral distribution were studied and the dependences of the number of iterations on the dimension of matrices were estimated. It is shown that the non-uniformity in the eigenvalue distribution within the fixed spectrum boundaries leads to a significant increase in the number of iterations with increasing dimension of the matrices. The increasing imaginary part of the eigenvalues has a similar effect on the convergence rate. Using as an example the model potential distribution problem in a square domain, including anisotropic ring inhomogeneity, a comparative analysis of the matrix structure and the convergence rate of the bi-conjugate gradient method with Fourier – Jacobi and incomplete LU factorization preconditioners is performed. It is shown that the advantages of the Fourier – Jacobi preconditioner are associated with a more uniform distribution of the spectrum of the preconditioned matrix along the real axis and a better suppression of the imaginary part of the spectrum compared to the preconditioner based on the incomplete LU factorization.

2008 ◽  
Vol 13 (3) ◽  
pp. 313-326
Author(s):  
Natali G. Abrashina-Zhadaeva ◽  
Alexey A. Egorov

Additive iterative methods of complete approximation for stationary problems of mathematical physics are proposed. The convergence rate in the case of an arbitrary number of commutative and noncommutative partition operators is analysed. The optimal values of the iterative parameter are found and related estimates for the number of iterations are derived. Some applications of suggested iterative methods are discussed.


Author(s):  
V. M. Volkov ◽  
A. U. Prakonina

Finite difference schemes and iterative methods of solving anisotropic diffusion problems governing multidimensional elliptic PDE with mixed derivatives are considered. By the example of the test problem with discontinuous coefficients, it is shown that the spectral characteristics of the finite difference problem and the efficiency of their preconditioning depend on the mixed derivatives approximation method. On the basis of the comparative numerical analysis, the most adequate approximation formulas for the mixed derivatives providing a maximum convergence rate of the bi-conjugate gradients method with the incomplete LU factorization and the Fourier – Jacobi preconditioners are discovered. It is shown that the monotonicity of the finite difference scheme does not guarantee advantages at their iterative implementation. Moreover, the grid maximum principle is not provided under the conditions of essential anisotropy.


Author(s):  
A. A. Abdurakhimova ◽  
N. M. Kassymbek ◽  
O. Zh. Mamyrbayev

The problem of generalization of the method is the main question that arises when studying the quality of iterative methods. The efficiency of solving systems using iterative methods directly depends on the assumptions about the system of equations to be solved. Prerequisites are used to provide a more efficient solution. Many types of prerequisites are currently known, for example, prerequisites based on the approximation of the system matrix: ILU, IQR, and ILQ; Prerequisites based on the approximation of the inverse matrix: a polynomial, rarely filled approximation of the inverse matrix (for example, AINV), an approximation in the factorized form of the inverse matrix (for example, FSAI, SPAI, etc.). This article analyzes the CG and CG methods with the preconditioner ILU (0) by the example of solving the two-dimensional Poisson equation. The CG method is usually used to solve any system of linear equations. ILU (0) was selected as a prerequisite for the article. The incomplete LU decomposition (ILU (0)) is an efficient precursor and is easily implemented. This suggests a system that can be solved to speed up the accumulation of CG and other iterative methods, that is, to reduce the number of iterations. The ILU (0) preconditioner is very easy to detect using the LU decomposition. Since the linear matrix was rarely filled, the CSR format was used to store the matrix in memory. ILU (0) + CG, i.e. the algorithm with a precondition, was assembled 5-8 times faster than the CG algorithm. Data on the number of iterations of convergence of the method without a preconditioner and with the ILU(0) preconditioner were obtained and analyzed.


Processes ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 130 ◽  
Author(s):  
Pavel Praks ◽  
Dejan Brkić

The Colebrook equation is implicitly given in respect to the unknown flow friction factor λ; λ = ζ ( R e , ε * , λ ) which cannot be expressed explicitly in exact way without simplifications and use of approximate calculus. A common approach to solve it is through the Newton–Raphson iterative procedure or through the fixed-point iterative procedure. Both require in some cases, up to seven iterations. On the other hand, numerous more powerful iterative methods such as three- or two-point methods, etc. are available. The purpose is to choose optimal iterative method in order to solve the implicit Colebrook equation for flow friction accurately using the least possible number of iterations. The methods are thoroughly tested and those which require the least possible number of iterations to reach the accurate solution are identified. The most powerful three-point methods require, in the worst case, only two iterations to reach the final solution. The recommended representatives are Sharma–Guha–Gupta, Sharma–Sharma, Sharma–Arora, Džunić–Petković–Petković; Bi–Ren–Wu, Chun–Neta based on Kung–Traub, Neta, and the Jain method based on the Steffensen scheme. The recommended iterative methods can reach the final accurate solution with the least possible number of iterations. The approach is hybrid between the iterative procedure and one-step explicit approximations and can be used in engineering design for initial rough, but also for final fine calculations.


Author(s):  
Nur Afza Mat Ali ◽  
Rostang Rahman ◽  
Jumat Sulaiman ◽  
Khadizah Ghazali

<p>Similarity method is used in finding the solutions of partial differential equation (PDE) in reduction to the corresponding ordinary differential equation (ODE) which are not easily integrable in terms of elementary or tabulated functions. Then, the Half-Sweep Successive Over-Relaxation (HSSOR) iterative method is applied in solving the sparse linear system which is generated from the discretization process of the corresponding second order ODEs with Dirichlet boundary conditions. Basically, this ODEs has been constructed from one-dimensional reaction-diffusion equations by using wave variable transformation. Having a large-scale and sparse linear system, we conduct the performances analysis of three iterative methods such as Full-sweep Gauss-Seidel (FSGS), Full-sweep Successive Over-Relaxation (FSSOR) and HSSOR iterative methods to examine the effectiveness of their computational cost. Therefore, four examples of these problems were tested to observe the performance of the proposed iterative methods.  Throughout implementation of numerical experiments, three parameters have been considered which are number of iterations, execution time and maximum absolute error. According to the numerical results, the HSSOR method is the most efficient iterative method in solving the proposed problem with the least number of iterations and execution time followed by FSSOR and FSGS iterative methods.</p>


Author(s):  
Nur Syarafina Mohamed ◽  
Mustafa Mamat ◽  
Mohd Rivaie ◽  
Shazlyn Milleana Shaharudin

One of the popular approaches in modifying the Conjugate Gradient (CG) Method is hybridization. In this paper, a new hybrid CG is introduced and its performance is compared to the classical CG method which are Rivaie-Mustafa-Ismail-Leong (RMIL) and Syarafina-Mustafa-Rivaie (SMR) methods. The proposed hybrid CG is evaluated as a convex combination of RMIL and SMR method. Their performance are analyzed under the exact line search. The comparison performance showed that the hybrid CG is promising and has outperformed the classical CG of RMIL and SMR in terms of the number of iterations and central processing unit per time.


2021 ◽  
Vol 263 (5) ◽  
pp. 1029-1040
Author(s):  
Pierangelo Libianchi ◽  
Finn T. Agerkvist ◽  
Elena Shabalina

In sound field control, a set of control sources is used to match the pressure field generated by noise sources but with opposite phase to reduce the total sound pressure level in a defined area commonly referred to as dark zone. This is usually an ill-posed problem. The approach presented here employs a subspace iterative method where the number of iterations acts as the regularization parameter and controls unwanted side radiation, i.e. side lobes. More iterations lead to less regularization and more side lobes. The number of iterations is controlled by problem-specific stopping criteria. Simulations show the increase of lobing with increased number of iterations. The solutions are analysed through projections on the basis provided by the source strength modes corresponding to the right singular vector of the transfer function matrix. These projections show how higher order pressure modes (left singular vectors) become dominant with larger number of iterations. Furthermore, an active-set type method provides the constraints on the amplitude of the solution which is not possible with the conjugate gradient least square algorithm alone.


Author(s):  
Eisa Khosravi Dehdezi ◽  
Saeed Karimi

In this paper, two attractive iterative methods – conjugate gradient squared (CGS) and conjugate residual squared (CRS) – are extended to solve the generalized coupled Sylvester tensor equations [Formula: see text]. The proposed methods use tensor computations with no maricizations involved. Also, some properties of the new methods are presented. Finally, several numerical examples are given to compare the efficiency and performance of the proposed methods with some existing algorithms.


Author(s):  
Roman Iakymchuk ◽  
Maria Barreda Vayá ◽  
Stef Graillat ◽  
José I Aliaga ◽  
Enrique S Quintana-Ortí

The Preconditioned Conjugate Gradient method is often employed for the solution of linear systems of equations arising in numerical simulations of physical phenomena. While being widely used, the solver is also known for its lack of accuracy while computing the residual. In this article, we propose two algorithmic solutions that originate from the ExBLAS project to enhance the accuracy of the solver as well as to ensure its reproducibility in a hybrid MPI + OpenMP tasks programming environment. One is based on ExBLAS and preserves every bit of information until the final rounding, while the other relies upon floating-point expansions and, hence, expands the intermediate precision. Instead of converting the entire solver into its ExBLAS-related implementation, we identify those parts that violate reproducibility/non-associativity, secure them, and combine this with the sequential executions. These algorithmic strategies are reinforced with programmability suggestions to assure deterministic executions. Finally, we verify these approaches on two modern HPC systems: both versions deliver reproducible number of iterations, residuals, direct errors, and vector-solutions for the overhead of less than 37.7% on 768 cores.


Sign in / Sign up

Export Citation Format

Share Document