barrier crossing
Recently Published Documents


TOTAL DOCUMENTS

259
(FIVE YEARS 45)

H-INDEX

40
(FIVE YEARS 5)

2022 ◽  
Vol 128 (2) ◽  
Author(s):  
Félix Ginot ◽  
Juliana Caspers ◽  
Matthias Krüger ◽  
Clemens Bechinger
Keyword(s):  

2021 ◽  
Author(s):  
Nicolas Daffern ◽  
Christopher Nordyke ◽  
Meiling Zhang ◽  
Arthur G. Palmer ◽  
John E. Straub

ABSTRACT Chemical exchange line broadening is an important phenomenon in nuclear magnetic resonance (NMR) spectroscopy, in which a nuclear spin experiences more than one magnetic environment as a result of chemical or conformational changes of a molecule. The dynamic process of chemical exchange strongly affects the sensitivity and resolution of NMR experiments and increasingly provides a powerful probe of the interconversion between chemical and conformational states of proteins, nucleic acids, and other biologic macromolecules. A simple and often used theoretic description of chemical exchange in NMR spectroscopy is based on an idealized 2-state jump model (the random phase or telegraph signal). However, chemical exchange can also be represented as a barrier crossing event that can be modeled by using chemical reaction rate theory. The timescale of crossing is determined by the barrier height, the temperature, and the dissipation modeled as collisional or frictional damping. This tutorial explores the connection between the NMR theory of chemical exchange line broadening and strong collision models for chemical kinetics in statistical mechanics. Theoretic modeling and numeric simulation are used to map the rate of barrier crossing dynamics of a particle on a potential energy surface to the chemical exchange relaxation rate constant. By developing explicit models for the exchange dynamics, the tutorial aims to elucidate the underlying dynamical processes that give rise to the rich phenomenology of chemical exchange observed in NMR spectroscopy. Software for generating and analyzing the numeric simulations is provided in the form of Python and Fortran source codes.


2021 ◽  
pp. 139255
Author(s):  
Páll J. Thorsteinsson ◽  
Niels E. Henriksen

2021 ◽  
Vol 118 (40) ◽  
pp. e2109118118
Author(s):  
Morais Brown ◽  
Ioanna Zoi ◽  
Dimitri Antoniou ◽  
Hilda A. Namanja-Magliano ◽  
Steven D. Schwartz ◽  
...  

Heavy enzyme isotope effects occur in proteins substituted with 2H-, 13C-, and 15N-enriched amino acids. Mass alterations perturb femtosecond protein motions and have been used to study the linkage between fast motions and transition-state barrier crossing. Heavy enzymes typically show slower rates for their chemical steps. Heavy bacterial methylthioadenosine nucleosidases (MTANs from Helicobactor pylori and Escherichia coli) gave normal isotope effects in steady-state kinetics, with slower rates for the heavy enzymes. However, both enzymes revealed rare inverse isotope effects on their chemical steps, with faster chemical steps in the heavy enzymes. Computational transition-path sampling studies of H. pylori and E. coli MTANs indicated closer enzyme–reactant interactions in the heavy MTANs at times near the transition state, resulting in an improved reaction coordinate geometry. Specific catalytic interactions more favorable for heavy MTANs include improved contacts to the catalytic water nucleophile and to the adenine leaving group. Heavy bacterial MTANs depart from other heavy enzymes as slowed vibrational modes from the heavy isotope substitution caused improved barrier-crossing efficiency. Improved sampling frequency and reactant coordinate distances are highlighted as key factors in MTAN transition-state stabilization.


2021 ◽  
Vol 16 (2) ◽  
Author(s):  
Shayan Lameh ◽  
Tim Zhao ◽  
Derek Stein
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document