scholarly journals Over-barrier crossing in multidimensional tunneling

2021 ◽  
pp. 139255
Author(s):  
Páll J. Thorsteinsson ◽  
Niels E. Henriksen
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Christie D. Lavallée ◽  
Saeedeh Bani Assadi ◽  
Alicia M. Korpach ◽  
James D. Ray ◽  
Jason D. Fischer ◽  
...  

Abstract Background The migration patterns of land birds can generally be divided into those species that migrate principally during the day and those that migrate during the night. Some species may show individual plasticity in the use of day or night flight, particularly when crossing large, open-water or desert barriers. However, individual plasticity in circadian patterns of migratory flights in diurnally migrating songbirds has never been investigated. Methods We used high precision GPS tracking of a diurnal, migratory swallow, the purple martin (Progne subis), to determine whether individuals were flexible in their spring migration strategies to include some night flight, particularly at barrier crossing. Results Most (91%) of individuals made large (sometimes > 1000 km), open-water crossings of the Caribbean Sea and the Gulf of Mexico that included the use of night flight. 32% of all water crossings were initiated at night, demonstrating that night flight is not only used to complete large crossings but may confer other advantages for diurnal birds. Birds were not more likely to initiate crossings with supportive winds, however crossings were more likely when they reduced travel distances. Our results are consistent with diurnal birds using night flight to help achieve time- and energy-savings through ‘short cuts’ at barrier crossings, at times and locations when foraging opportunities are not available. Conclusions Overall, our results demonstrate the use of nocturnal flight and a high degree of individual plasticity in migration strategies on a circadian scale in a species generally considered to be a diurnal migrant. Nocturnal flights at barrier crossing may provide time and energy savings where foraging opportunities are low in an otherwise diurnal strategy. Future research should target how diel foraging and refueling strategies support nocturnal flights and barrier crossing in this and other diurnal species.


mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Felipe H. Santiago-Tirado ◽  
Michael D. Onken ◽  
John A. Cooper ◽  
Robyn S. Klein ◽  
Tamara L. Doering

ABSTRACT The blood-brain barrier (BBB) protects the central nervous system (CNS) by restricting the passage of molecules and microorganisms. Despite this barrier, however, the fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that is estimated to kill over 600,000 people annually. Cryptococcal infection begins in the lung, and experimental evidence suggests that host phagocytes play a role in subsequent dissemination, although this role remains ill defined. Additionally, the disparate experimental approaches that have been used to probe various potential routes of BBB transit make it impossible to assess their relative contributions, confounding any integrated understanding of cryptococcal brain entry. Here we used an in vitro model BBB to show that a “Trojan horse” mechanism contributes significantly to fungal barrier crossing and that host factors regulate this process independently of free fungal transit. We also, for the first time, directly imaged C. neoformans-containing phagocytes crossing the BBB, showing that they do so via transendothelial pores. Finally, we found that Trojan horse crossing enables CNS entry of fungal mutants that cannot otherwise traverse the BBB, and we demonstrate additional intercellular interactions that may contribute to brain entry. Our work elucidates the mechanism of cryptococcal brain invasion and offers approaches to study other neuropathogens. IMPORTANCE The fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that kills hundreds of thousands of people each year. One route that has been proposed for this brain entry is a Trojan horse mechanism, whereby the fungus crosses the blood-brain barrier (BBB) as a passenger inside host phagocytes. Although indirect experimental evidence supports this intriguing mechanism, it has never been directly visualized. Here we directly image Trojan horse transit and show that it is regulated independently of free fungal entry, contributes to cryptococcal BBB crossing, and allows mutant fungi that cannot enter alone to invade the brain. IMPORTANCE The fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that kills hundreds of thousands of people each year. One route that has been proposed for this brain entry is a Trojan horse mechanism, whereby the fungus crosses the blood-brain barrier (BBB) as a passenger inside host phagocytes. Although indirect experimental evidence supports this intriguing mechanism, it has never been directly visualized. Here we directly image Trojan horse transit and show that it is regulated independently of free fungal entry, contributes to cryptococcal BBB crossing, and allows mutant fungi that cannot enter alone to invade the brain.


1992 ◽  
Vol 68 (17) ◽  
pp. 2608-2611 ◽  
Author(s):  
Surjit Singh ◽  
R. Krishnan ◽  
G. W. Robinson

2004 ◽  
Vol 66 (5) ◽  
pp. 763-769 ◽  
Author(s):  
P Kraikivski ◽  
R Lipowsky ◽  
J Kierfeld

Sign in / Sign up

Export Citation Format

Share Document