fast encoding
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 15)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 9 (11) ◽  
pp. 1279
Author(s):  
Hongrui Lu ◽  
Yingjun Zhang ◽  
Zhuolin Wang

The High Efficiency Video Coding Standard (HEVC) is one of the most advanced coding schemes at present, and its excellent coding performance is highly suitable for application in the navigation field with limited bandwidth. In recent years, the development of emerging technologies such as screen sharing and remote control has promoted the process of realizing the virtual driving of unmanned ships. In order to improve the transmission and coding efficiency during screen sharing, HEVC proposes a new extension scheme for screen content coding (HEVC-SCC), which is based on the original coding framework. SCC has improved the performance of compressing computer graphics content and video by adding new coding tools, but the complexity of the algorithm has also increased. At present, there is no delay in the compression optimization method designed for radar digital video in the field of navigation. Therefore, our paper starts from the perspective of increasing the speed of encoded radar video, and takes reducing the computational complexity of the rate distortion cost (RD-cost) as the goal of optimization. By analyzing the characteristics of shipborne radar digital video, a fast encoding algorithm for shipborne radar digital video based on deep learning is proposed. Firstly, a coding tree unit (CTU) division depth interval dataset of shipborne radar images was established. Secondly, in order to avoid erroneously skipping of the intra block copy (IBC)/palette mode (PLT) in the coding unit (CU) division search process, we designed a method to divide the depth interval by predicting the CTU in advance and limiting the CU rate distortion cost to be outside the traversal calculation depth interval, which effectively reduced the compression time. The effect of radar transmission and display shows that, within the acceptable range of Bjøntegaard Delta Bit Rate (BD-BR) and Bjøntegaard Delta Peak Signal to Noise Rate (BD-PSNR) attenuation, the algorithm proposed in this paper reduces the coding time by about 39.84%, on average, compared to SCM8.7.


2021 ◽  
Author(s):  
James B Priestley ◽  
John C Bowler ◽  
Sebi V Rolotti ◽  
Stefano Fusi ◽  
Attila Losonczy

Neurons in the hippocampus exhibit striking selectivity for specific combinations of sensory features, forming representations which are thought to subserve episodic memory. Even during a completely novel experience, ensembles of hippocampal ``place cells'' are rapidly configured such that the population sparsely encodes visited locations, stabilizing within minutes of the first exposure to a new environment. What cellular mechanisms enable this fast encoding of experience? Here we leverage virtual reality and large scale neural recordings to dissect the effects of novelty and experience on the dynamics of place field formation. We show that the place fields of many CA1 neurons transiently shift locations and modulate the amplitude of their activity immediately after place field formation, consistent with rapid plasticity mechanisms driven by plateau potentials and somatic burst spiking. These motifs were particularly enriched during initial exploration of a novel context and decayed with experience. Our data suggest that novelty modulates the effective learning rate in CA1, favoring burst-driven field formation to support fast synaptic updating during new experience.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4926
Author(s):  
Rongjun Chen ◽  
Yongxing Yu ◽  
Jiangtao Chen ◽  
Yongbin Zhong ◽  
Huimin Zhao ◽  
...  

With the development of commodity economy, the emergence of fake and shoddy products has seriously harmed the interests of consumers and enterprises. To tackle this challenge, customized 2D barcode is proposed to satisfy the requirements of the enterprise anti-counterfeiting certification. Based on information hiding technology, the proposed approach can solve these challenging problems and provide a low-cost, difficult to forge, and easy to identify solution, while achieving the function of conventional 2D barcodes. By weighting between the perceptual quality and decoding robustness in sensing recognition, the customized 2D barcode can maintain a better aesthetic appearance for anti-counterfeiting and achieve fast encoding. A new picture-embedding scheme was designed to consider 2D barcode, within a unit image block as a basic encoding unit, where the 2D barcode finder patterns were embedded after encoding. Experimental results demonstrated that the proposed customized barcode could provide better encoding characteristics, while maintaining better decoding robustness than several state-of-the-art methods. Additionally, as a closed source 2D barcode that could be visually anti-counterfeit, the customized 2D barcode could effectively prevent counterfeiting that replicate physical labels. Benefitting from the high-security, high information capacity, and low-cost, the proposed customized 2D barcode with sensing recognition scheme provide a highly practical, valuable in terms of marketing, and anti-counterfeiting traceable solution for future smart IoT applications.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jinchao Zhao ◽  
Yihan Wang ◽  
Qiuwen Zhang

With the development of technology, the hardware requirement and expectations of user for visual enjoyment are getting higher and higher. The multitype tree (MTT) architecture is proposed by the Joint Video Experts Team (JVET). Therefore, it is necessary to determine not only coding unit (CU) depth but also its split mode in the H.266/Versatile Video Coding (H.266/VVC). Although H.266/VVC achieves significant coding performance on the basis of H.265/High Efficiency Video Coding (H.265/HEVC), it causes significantly coding complexity and increases coding time, where the most time-consuming part is traversal calculation rate-distortion (RD) of CU. To solve these problems, this paper proposes an adaptive CU split decision method based on deep learning and multifeature fusion. Firstly, we develop a texture classification model based on threshold to recognize complex and homogeneous CU. Secondly, if the complex CUs belong to edge CU, a Convolutional Neural Network (CNN) structure based on multifeature fusion is utilized to classify CU. Otherwise, an adaptive CNN structure is used to classify CUs. Finally, the division of CU is determined by the trained network and the parameters of CU. When the complex CUs are split, the above two CNN schemes can successfully process the training samples and terminate the rate-distortion optimization (RDO) calculation for some CUs. The experimental results indicate that the proposed method reduces the computational complexity and saves 39.39% encoding time, thereby achieving fast encoding in H.266/VVC.


2020 ◽  
Vol 69 (5) ◽  
pp. 699-705
Author(s):  
Leilei Yu ◽  
Zhichang Lin ◽  
Sian-Jheng Lin ◽  
Yunghsiang S. Han ◽  
Nenghai Yu

Sign in / Sign up

Export Citation Format

Share Document