stratified lie group
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 2)

H-INDEX

1
(FIVE YEARS 1)

2022 ◽  
Vol 32 (2) ◽  
Author(s):  
Eirik Berge

AbstractWe define and investigate $$\alpha $$ α -modulation spaces $$M_{p,q}^{s,\alpha }(G)$$ M p , q s , α ( G ) associated to a step two stratified Lie group G with rational structure constants. This is an extension of the Euclidean $$\alpha $$ α -modulation spaces $$M_{p,q}^{s,\alpha }({\mathbb {R}}^n)$$ M p , q s , α ( R n ) that act as intermediate spaces between the modulation spaces ($$\alpha = 0$$ α = 0 ) in time-frequency analysis and the Besov spaces ($$\alpha = 1$$ α = 1 ) in harmonic analysis. We will illustrate that the group structure and dilation structure on G affect the boundary cases $$\alpha = 0,1$$ α = 0 , 1 where the spaces $$M_{p,q}^{s}(G)$$ M p , q s ( G ) and $${\mathcal {B}}_{p,q}^{s}(G)$$ B p , q s ( G ) have non-standard translation and dilation symmetries. Moreover, we show that the spaces $$M_{p,q}^{s,\alpha }(G)$$ M p , q s , α ( G ) are non-trivial and generally distinct from their Euclidean counterparts. Finally, we examine how the metric geometry of the coverings $${\mathcal {Q}}(G)$$ Q ( G ) underlying the $$\alpha = 0$$ α = 0 case $$M_{p,q}^{s}(G)$$ M p , q s ( G ) allows for the existence of geometric embeddings $$\begin{aligned} F:M_{p,q}^{s}({\mathbb {R}}^k) \longrightarrow {} M_{p,q}^{s}(G), \end{aligned}$$ F : M p , q s ( R k ) ⟶ M p , q s ( G ) , as long as k (that only depends on G) is small enough. Our approach naturally gives rise to several open problems that is further elaborated at the end of the paper.


2020 ◽  
Vol 32 (5) ◽  
pp. 1337-1373 ◽  
Author(s):  
Yixin Wang ◽  
Yu Liu ◽  
Chuanhong Sun ◽  
Pengtao Li

AbstractLet {\mathcal{L}=-{\Delta}_{\mathbb{G}}+V} be a Schrödinger operator on the stratified Lie group {\mathbb{G}}, where {{\Delta}_{\mathbb{G}}} is the sub-Laplacian and the nonnegative potential V belongs to the reverse Hölder class {B_{q_{0}}} with {q_{0}>\mathcal{Q}/2} and {\mathcal{Q}} is the homogeneous dimension of {\mathbb{G}}. In this article, by Campanato type spaces {\Lambda^{\alpha}_{\mathcal{L}}(\mathbb{G})}, we introduce Hardy type spaces associated with {\mathcal{L}} denoted by {H^{{p}}_{\vphantom{\varepsilon}{\mathcal{L}}}(\mathbb{G})} and prove the atomic characterization of {H^{{p}}_{\vphantom{\varepsilon}{\mathcal{L}}}(\mathbb{G})}. Further, we obtain the following duality relation:\Lambda_{\mathcal{L}}^{\mathcal{Q}(1/p-1)}(\mathbb{G})=(H^{{p}}_{\vphantom{% \varepsilon}{\mathcal{L}}}(\mathbb{G}))^{\ast},\quad\mathcal{Q}/(\mathcal{Q}+% \delta)<p<1\quad\text{for}\ \delta=\min\{1,2-\mathcal{Q}/q_{0}\}.The above relation enables us to characterize {\Lambda^{\alpha}_{\mathcal{L}}(\mathbb{G})} via two families of Carleson measures generated by the heat semigroup and the Poisson semigroup, respectively. Also, we obtain two classes of perturbation formulas associated with the semigroups related to {\mathcal{L}}. As applications, we obtain the boundedness of the Littlewood–Paley function and the Lusin area function on {\Lambda^{\alpha}_{\mathcal{L}}(\mathbb{G})}.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Yu Liu ◽  
Jianfeng Dong

Assume thatGis a stratified Lie group andQis the homogeneous dimension ofG. Let-Δbe the sub-Laplacian onGandW≢0a nonnegative potential belonging to certain reverse Hölder classBsfors≥Q/2. LetL=-Δ+Wbe a Schrödinger operator on the stratified Lie groupG. In this paper, we prove the boundedness of some integral operators related toL, such asL-1∇2,L-1W, andL-1(-Δ) on the spaceBMOL(G).


Sign in / Sign up

Export Citation Format

Share Document