relaxation labeling
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 6)

H-INDEX

18
(FIVE YEARS 0)

Author(s):  
Josep Carmona ◽  
Lluís Padró ◽  
Luis Delicado

Computing a mapping between two process models is a crucial technique, since it enables reasoning and operating across processes, like providing a similarity score between two processes, or merging different process variants to generate a consolidated process model. In this paper we present a new flexible technique for process model mapping, based on the relaxation labeling constraint satisfaction algorithm. The technique can be instantiated so that different modes are devised, depending on the context. For instance, it can be adapted to the case where one of the mapped process models is incomplete, or it can be used to ground an adaptable similarity measure between process models. The approach has been implemented inside the open platform NLP4BPM, providing a visualization of the performed mappings and computed similarity scores. The experimental results witness the flexibility and usefulness of the technique proposed.


2020 ◽  
Vol 175 (1-4) ◽  
pp. 123-141
Author(s):  
Josep Carmona ◽  
Lluís Padró ◽  
Luis Delicado

Computing a mapping between two process models is a crucial technique, since it enables reasoning and operating across processes, like providing a similarity score between two processes, or merging different process variants to generate a consolidated process model. In this paper we present a new flexible technique for process model mapping, based on the relaxation labeling constraint satisfaction algorithm. The technique can be instantiated so that different modes are devised, depending on the context. For instance, it can be adapted to the case where one of the mapped process models is incomplete, or it can be used to ground an adaptable similarity measure between process models. The approach has been implemented inside the open platform NLP4BPM, providing a visualization of the performed mappings and computed similarity scores. The experimental results witness the flexibility and usefulness of the technique proposed.


2020 ◽  
Vol 64 (5) ◽  
pp. 50408-1-50408-9
Author(s):  
Shoji Tominaga ◽  
Keita Hirai ◽  
Takahiko Horiuchi

Abstract The authors discuss the spectral estimation of multiple light sources from image data in a complex illumination environment. An approach is proposed to effectively estimate illuminant spectra and the corresponding light sources based on highlight areas that appear on dielectric object surfaces. First, the authors develop a highlight detection method using two types of convolution filters with Gaussian distributions, center-surround and low-pass filters. This method is available even for white surfaces, and it is independent of object color and of viewing and incidence angles. Second, they present an algorithm for estimating the illuminant spectra from extracted highlight areas. Each specular highlight area has a spectral composition corresponding to only one light source among multiple light sources. The spectral image data are projected onto a two-dimensional subspace, where a linear cluster in pixel distribution is detected for each highlight area. Third, the relative positional relationship between highlight areas among different object surfaces is used to identify the light sources on each surface. The authors develop an algorithm based on probabilistic relaxation labeling. The light source for each highlight and the corresponding spectral-power distribution are determined from the iterative labeling process. Finally, the feasibility of the proposed approach is examined in an experiment using a real complex environment, where dielectric objects are illuminated by multiple light sources of light-emitting diode, fluorescence, and incandescence.


2017 ◽  
Vol 28 (8) ◽  
pp. 085301 ◽  
Author(s):  
Takeshi Horinouchi ◽  
Shin-ya Murakami ◽  
Toru Kouyama ◽  
Kazunori Ogohara ◽  
Atsushi Yamazaki ◽  
...  

2016 ◽  
Vol 34 (1) ◽  
pp. 55-65 ◽  
Author(s):  
Wanxia Deng ◽  
Huanxin Zou ◽  
Fang Guo ◽  
Lin Lei ◽  
Shilin Zhou

Sign in / Sign up

Export Citation Format

Share Document