cloud resolving model
Recently Published Documents


TOTAL DOCUMENTS

355
(FIVE YEARS 63)

H-INDEX

50
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Layrson J. M. Gonçalves ◽  
Simone M. S. C. Coelho ◽  
Paulo Y. Kubota ◽  
Dayana C. Souza

Abstract. Observational meteorological data from the field experiment GoAmazon 2014/15 and data from numerical simulations with the Cloud-Resolving Model (CRM) called System for Atmospheric Modeling (SAM) are used to study the interaction between the cloudiness-radiation and the atmospheric dynamics and thermodynamics variables for a site located in the central Amazon region (−3.2° S, −60.6° W) during the wet and dry periods. The main aims are to (a) analyze the temporal series of the integrated cloud fraction, precipitation rate and downward shortwave flux; and (b) to determine the relationship between the integrated cloud fraction, radiative fluxes, and large-scale variable anomalies as a function of the previous day's average. The temporal series of the integrated cloud fraction, precipitation rate and downward shortwave flux from SAMS simulations showed physical consistency with the observations from GoAmazon 2014/15. Shallow and deep convection clouds show to have meaningful impact on radiation fluxes in the Amazon region during wet and dry periods. Anomalies of large-scale variables (relative to the previous day's average) are physically associated with cloud formation, evolution and dissipation. SAM consistently simulated these results, where the cloud fraction vertical profile shows a pattern very close to the observed data (cloud type). Additionally, the integrated cloud fraction and large-scale variable anomalies, as a function of the previous day's average, have a good correlation. These results suggest that the memory of the large-scale dynamics from previous day can be used to estimate the clouds fraction. As well as the water content, which is a variable of the cloud itself. In general, the SAM satisfactorily simulated the interaction between cloud-radiation and dynamic and thermodynamic variables of the atmosphere during the periods of this study, being indicated to obtain atmospheric variables that are impossible to obtain in an observational way.


2022 ◽  
Vol 22 (1) ◽  
pp. 23-40
Author(s):  
Chung-Chieh Wang ◽  
Pi-Yu Chuang ◽  
Chih-Sheng Chang ◽  
Kazuhisa Tsuboki ◽  
Shin-Yi Huang ◽  
...  

Abstract. In this study, the performance of quantitative precipitation forecasts (QPFs) by the Cloud-Resolving Storm Simulator (CReSS) in Taiwan, at a horizontal grid spacing of 2.5 km and a domain size of 1500×1200 km2, in the range of 1–3 d during three Mei-yu seasons (May–June) of 2012–2014 is evaluated using categorical statistics, with an emphasis on heavy-rainfall events (≥100 mm per 24 h). The categorical statistics are chosen because the main hazards are landslides and floods in Taiwan, so predicting heavy rainfall at the correct location is important. The overall threat scores (TSs) of QPFs for all events on day 1 (0–24 h) are 0.18, 0.15, and 0.09 at thresholds of 100, 250, and 500 mm, respectively, and indicate considerable improvements at increased resolution compared to past results and 5 km models (TS < 0.1 at 100 mm and TS ≤ 0.02 at 250 mm). Moreover, the TSs are shown to be higher and the model more skillful in predicting larger events, in agreement with earlier findings for typhoons. After classification based on observed rainfall, the TSs of day − 1 QPFs for the largest 4 % of events by CReSS at 100, 250, and 500 mm (per 24 h) are 0.34, 0.24, and 0.16, respectively, and can reach 0.15 at 250 mm on day 2 (24–48 h) and 130 mm on day 3 (48–72 h). The larger events also exhibit higher probability of detection and lower false alarm ratio than smaller ones almost without exception across all thresholds. With the convection and terrain better resolved, the strength of the model is found to lie mainly in the topographic rainfall in Taiwan rather than migratory events that are more difficult to predict. Our results highlight the crucial importance of cloud-resolving capability and the size of fine mesh for heavy-rainfall QPFs in Taiwan.


2021 ◽  
pp. 1-66
Author(s):  
Adam B. Sokol ◽  
Casey J. Wall ◽  
Dennis L. Hartmann ◽  
Peter N. Blossey

Abstract Satellite observations of tropical maritime convection indicate an afternoon maximum in anvil cloud fraction that cannot be explained by the diurnal cycle of deep convection peaking at night. We use idealized cloud-resolving model simulations of single anvil cloud evolution pathways, initialized at different times of the day, to show that tropical anvil clouds formed during the day are more widespread and longer lasting than those formed at night. This diurnal difference is caused by shortwave radiative heating, which lofts and spreads anvil clouds via a mesoscale circulation that is largely absent at night, when a different, longwave-driven circulation dominates. The nighttime circulation entrains dry environmental air that erodes cloud top and shortens anvil lifetime. Increased ice nucleation in more turbulent nighttime conditions supported by the longwave cloud top cooling and cloud base heating dipole cannot overcompensate for the effect of diurnal shortwave radiative heating. Radiative-convective equilibrium simulations with a realistic diurnal cycle of insolation confirm the crucial role of shortwave heating in lofting and sustaining anvil clouds. The shortwave-driven mesoscale ascent leads to daytime anvils with larger ice crystal size, number concentration, and water content at cloud top than their nighttime counterparts.


2021 ◽  
Vol 14 (12) ◽  
pp. 7659-7672
Author(s):  
Duncan Watson-Parris ◽  
Andrew Williams ◽  
Lucia Deaconu ◽  
Philip Stier

Abstract. Large computer models are ubiquitous in the Earth sciences. These models often have tens or hundreds of tuneable parameters and can take thousands of core hours to run to completion while generating terabytes of output. It is becoming common practice to develop emulators as fast approximations, or surrogates, of these models in order to explore the relationships between these inputs and outputs, understand uncertainties, and generate large ensembles datasets. While the purpose of these surrogates may differ, their development is often very similar. Here we introduce ESEm: an open-source tool providing a general workflow for emulating and validating a wide variety of models and outputs. It includes efficient routines for sampling these emulators for the purpose of uncertainty quantification and model calibration. It is built on well-established, high-performance libraries to ensure robustness, extensibility and scalability. We demonstrate the flexibility of ESEm through three case studies using ESEm to reduce parametric uncertainty in a general circulation model and explore precipitation sensitivity in a cloud-resolving model and scenario uncertainty in the CMIP6 multi-model ensemble.


Author(s):  
Vicente Salinas ◽  
Eric C. Bruning ◽  
Edward R. Mansell

Abstract Lightning is frequently initiated within the convective regions of thunderstorms, and so flash rates tend to follow trends in updraft speed and volume. It has been suggested that lightning production is linked to the turbulent flow generated by updrafts as turbulent eddies organize charged hydrometeors into complex charge structures. These complex charge structures consist of local regions of increased charge magnitudes between which flash initiating electric fields may be generated. How turbulent kinematics influences lightning production, however, remains unclear. In this study, lightning flashes produced in a multi-cell and two supercell storms simulated using The Collaborative Model for Multiscale Atmospheric Simulation (COMMAS) were examined to identify the kinematic flow structures within which they occurred. By relating the structures of updrafts to thermals, initiated lightning were expected to be located where the rate of strain and rotational flow are equal, or between updraft and eddy flow features. Results showed that the average lightning flash is initiated in kinematic flow structures dominated by vortical flow patterns, similar to those of thermals, and the structures’ kinematics are characterized by horizontal vorticity and vertical shearing. These kinematic features were common across all cases and demonstrated that where flash initiating electric fields are generated is along the periphery of updrafts where turbulent eddies are produced. Careful consideration of flow structures near initiated flashes is consistent with those of thermals rising through a storm.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1501
Author(s):  
Chung-Chieh Wang ◽  
Chih-Sheng Chang ◽  
Yi-Wen Wang ◽  
Chien-Chang Huang ◽  
Shih-Chieh Wang ◽  
...  

In this study, 24 h quantitative precipitation forecasts (QPFs) by a cloud-resolving model (with a grid spacing of 2.5 km) on days 1–3 for 29 typhoons in six seasons of 2010–2015 in Taiwan were examined using categorical scores and rain gauge data. The study represents an update from a previous study for 2010–2012, in order to produce more stable and robust statistics toward the high thresholds (typically with fewer sample points), which is our main focus of interest. This is important to better understand the model’s ability to predict such high-impact typhoon rainfall events. The overall threat scores (TS, defined as the fraction among all verification points that are correctly predicted to reach a given threshold to all points that are either observed or predicted to reach that threshold, or both) were 0.28 and 0.18 on day 1 (0–24 h) QPFs, 0.25 and 0.16 on day 2 (24–48 h) QPFs, and 0.15 and 0.08 on day 3 (48–72 h) QPFs at 350 mm and 500 mm, respectively, showing improvements over 5 km models. Moreover, as found previously, a strong dependence of higher TSs for larger rainfall events also existed, and the corresponding TSs at 350 and 500 mm for the top 5% of events were 0.39 and 0.25 on day 1, 0.38 and 0.21 on day 2, and 0.25 and 0.12 on day 3. Thus, for the top typhoon rainfall events that have the highest potential for hazards, the model exhibits an even higher ability for QPFs based on categorical scores. Furthermore, it is shown that the model has little tendency to overpredict or underpredict rainfall for all groups of events with different rainfall magnitude across all thresholds, except for some tendency to under-forecast for the largest event group on day 3. Some issues associated with categorical statistics to be aware of are also demonstrated and discussed.


Author(s):  
David A. Schecter

Abstract A cloud resolving model is used to examine the intensification of tilted tropical cyclones from depression to hurricane strength over relatively cool and warm oceans under idealized conditions where environmental vertical wind shear has become minimal. Variation of the SST does not substantially change the time-averaged relationship between tilt and the radial length scale of the inner core, or between tilt and the azimuthal distribution of precipitation during the hurricane formation period (HFP). By contrast, for systems having similar structural parameters, the HFP lengthens superlinearly in association with a decline of the precipitation rate as the SST decreases from 30 to 26 °C. In many simulations, hurricane formation progresses from a phase of slow or neutral intensification to fast spinup. The transition to fast spinup occurs after the magnitudes of tilt and convective asymmetry drop below certain SST-dependent levels following an alignment process explained in an earlier paper. For reasons examined herein, the alignment coincides with enhancements of lower–middle tropospheric relative humidity and lower tropospheric CAPE inward of the radius of maximum surface wind speed rm. Such moist-thermodynamic modifications appear to facilitate initiation of the faster mode of intensification, which involves contraction of rm and the characteristic radius of deep convection. The mean transitional values of the tilt magnitude and lower–middle tropospheric relative humidity for SSTs of 28-30 °C are respectively higher and lower than their counterparts at 26 °C. Greater magnitudes of the surface enthalpy flux and core deep-layer CAPE found at the higher SSTs plausibly compensate for less complete alignment and core humidification at the transition time.


Author(s):  
Shiori Sugimoto ◽  
Kenichi Ueno ◽  
Hatsuki Fujinami ◽  
Tomoe Nasuno ◽  
Tomonori Sato ◽  
...  

AbstractA numerical experiment with a 2-km resolution was conducted using the Weather Research and Forecasting (WRF) model to investigate physical processes driving nocturnal precipitation over the Himalayas during the mature monsoon seasons between 2003 and 2010. The WRF model simulations of increases in precipitation twice a day, one in the afternoon and another around midnight, over the Himalayan slopes, and of the single nocturnal peak over the Himalayan foothills were reasonably accurate. To understand the synoptic-scale moisture transport and its local-scale convergence generating the nocturnal precipitation, composite analyses were conducted using the reanalysis dataset and model outputs. In the synoptic scale, moisture transport associated with the westward propagation of low pressure systems was found when nocturnal precipitation dominated over the Himalayan slopes. In contrast, moisture was directly provided from the synoptic-scale monsoon westerlies for nocturnal precipitation over the foothills. The model outputs suggested that precipitation occurred on the mountain ridges in the Himalayas during the afternoon, and expanded horizontally towards lower-elevation areas through the night. During the nighttime, the downslope wind was caused by radiative cooling at the surface and was intensified by evaporative cooling by hydrometeors in the near-surface layer. As a result, convergence between the downslope wind and the synoptic-scale flow promoted nocturnal precipitation over the Himalayas and to the south, as well as the moisture convergence by orography and/or synoptic-scale circulation patterns. The nocturnal precipitation over the Himalayas was not simulated well when we used the coarse topographic resolution and the smaller number of vertical layers.


Sign in / Sign up

Export Citation Format

Share Document