coaxial line
Recently Published Documents


TOTAL DOCUMENTS

717
(FIVE YEARS 98)

H-INDEX

32
(FIVE YEARS 4)

2021 ◽  
Vol 12 (1) ◽  
pp. 59
Author(s):  
Mikhail Gushchin ◽  
Alexey Palitsin ◽  
Askold Strikovskiy ◽  
Ilya Zudin ◽  
Sergey Korobkov ◽  
...  

A large-scale coaxial line filled with the plasma of RF discharge has been developed for laboratory modeling of the effects of the interaction of ultrashort electromagnetic pulses (EMPs) with the atmosphere and the ionosphere in the KROT facility. The oversized coaxial line ensures pulse transmission through an ionized medium in the TEM mode, which corresponds to the polarization of the transverse electromagnetic wave in free space, and in uniform isotropic plasma. The coaxial line has a length of 10 m and a diameter of 140 cm. The processes of propagation of the nanosecond and subnanosecond pulses in this line, in vacuum and with plasma, have been simulated numerically.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7212
Author(s):  
Helena Nowakowska ◽  
Dariusz Czylkowski ◽  
Bartosz Hrycak ◽  
Mariusz Jasiński

A new type of microwave plasma source is presented in which plasma at atmospheric pressure is generated inside a quartz rectangular flat box placed in a stripline supplied by a 2.45 GHz coaxial line. The plasma has a sheet shape and is designed for surface modification. Electric field and power flux distributions, tuning characteristics, and power characteristics (ratios of radiated, absorbed, and entering power) are numerically studied for three configurations: open, semi-closed, and closed. The calculations show that near-zero radiation reduction is possible only for the closed configuration, while the ratio of radiated power to entering power is always greater than 30% for the other configurations. The moving plunger is not sufficient for the ratio of reflected to incident power to fall below 20% for both the closed and open configurations. This is possible for the semi-closed configuration, but then the radiated power is the highest. The experiment shows that for the same entering power, the plasma volume is largest for the closed configuration and smallest for the open configuration, which we attribute to the difference in radiated power. The plasma generated using the closed stripline configuration has a larger volume than plasma generated using the rectangular waveguide.


2021 ◽  
Vol 2094 (3) ◽  
pp. 032040
Author(s):  
Yu Gimpilevich ◽  
I Afonin ◽  
V Vertegel ◽  
Yu Tyschuk

Abstract Two designs of a microwave sensor have been developed for a device for built-in monitoring of microwave path parameters, built on the basis of a broadband quadrature measurement method. The first sensor design is made on the basis of a symmetrical strip line, the second - on the basis of a segment of a coaxial line. Each of the microwave sensor designs consists of three parts: a directional coupler and two non-directional measuring probes. The microwave sensor is designed to operate in the 1 - 2 GHz frequency range. The paper also proposes a variant of the circuitry implementation of the built-in microwave control device, which implements the procedure for broadband automatic measurement of the complex reflection coefficient and the power level in the microwave path based on the method of quadrature measurements. The device solves the problem of long-term automatic monitoring of parameters and timely detection of the beginning degradation of the antenna-feeder path.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012003
Author(s):  
G A Mesyats ◽  
E A Osipenko ◽  
K A Sharypov ◽  
V G Shpak ◽  
S A Shunailov ◽  
...  

Abstract Flow of runaway electrons (RAEs) propagating in a radial, air-filled gap of coaxial line (CL) changes the dynamics of breakdown in the field of traveling voltage pulse. However, despite the effect of RAEs, breakdown does not occur if subnanosecond pulse is less in duration and amplitude than some values. In this work, we study the influence of an external axial magnetic field (B z) on the breakdown development. We demonstrate the transformation of the voltage pulse reflection from the ionized (breakdown) zone with changing B z. Due to gyration of fast electrons in an applied magnetic field, the gas region ionized by RAEs does not reach the anode. The ionized bridge between the cathode and anode is gradually replaced by a near-cathode plasma layer representing a discrete, reflecting/absorbing inhomogeneity in the CL.


2021 ◽  
Vol 29 (1) ◽  
pp. 99-104
Author(s):  
V. M. Morozov ◽  
V. I. Magro

The calculation of the non-reflective connection in the coaxial line is performed by the integral equation method. The connection of coaxial lines with a significant difference in geometric dimensions is considered. A system of equations is obtained that allows calculating the reflection coefficient of the T-wave from such an inhomogeneity. This technique makes it possible to calculate a multistage coaxial waveguide in order to minimize the reflection coefficient from inhomogeneities.


Physics ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 678-688
Author(s):  
Artem Shiryaev ◽  
Konstantin Rozanov ◽  
Andrey Naboko ◽  
Anastasia Artemova ◽  
Sergey Maklakov ◽  
...  

Composite materials filled with ferromagnetic inclusions are useful in the development of various microwave devices. The performance of such devices is determined both by material properties (such as the saturation magnetization and the permeability) and by the demagnetization effects. The paper is devoted to the study of the demagnetization effect on the permeability measurements of composites under external magnetic bias. The microwave permeability of composites filled with flake sendust (Fe-Si-Al alloy) particles is measured as a function of frequency and the external magnetic field. The measurements are carried out by the Nicolson–Ross–Weir technique in a 7/3 coaxial line in the frequency range of 0.1 to 20 GHz by a vector network analyzer. It is found that the magnetic loss peak is split under external fields of more than 1.5 kOe. The main aim of this paper is to study the causes of this splitting and to interpret the observed magnetic loss peaks. To study this effect, the samples of various thicknesses and the samples with isotropic and anisotropic orientations of particles are measured. The particles in the anisotropic samples are oriented by a strong uniform magnetic field. At a small fraction of inclusions, the permanent magnetic field is demagnetized on the individual particles rather than the whole sample. The splitting of the magnetic loss peak of the isotropic sample is caused by different orientations of particles in the sample. At a high fraction of inclusions, the permanent magnetic field is demagnetized on the whole sample and the magnetic loss peak of the isotropic sample is not split. The saturation magnetization of the material is found by measurements under the external magnetic field of the anisotropic sample.


2021 ◽  
Vol 11 (15) ◽  
pp. 6885
Author(s):  
Marcos D. Fernandez ◽  
José A. Ballesteros ◽  
Angel Belenguer

Empty substrate integrated coaxial line (ESICL) technology preserves the many advantages of the substrate integrated technology waveguides, such as low cost, low profile, or integration in a printed circuit board (PCB); in addition, ESICL is non-dispersive and has low radiation. To date, only two transitions have been proposed in the literature that connect the ESICL to classical planar lines such as grounded coplanar and microstrip. In both transitions, the feeding planar lines and the ESICL are built in the same substrate layer and they are based on transformed structures in the planar line, which must be in the central layer of the ESICL. These transitions also combine a lot of metallized and non-metallized parts, which increases the complexity of the manufacturing process. In this work, a new through-wire microstrip-to-ESICL transition is proposed. The feeding lines and the ESICL are implemented in different layers, so that the height of the ESICL can be independently chosen. In addition, it is a highly compact transition that does not require a transformer and can be freely rotated in its plane. This simplicity provides a high degree of versatility in the design phase, where there are only four variables that control the performance of the transition.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4624
Author(s):  
Arthur V. Dolmatov ◽  
Sergey S. Maklakov ◽  
Polina A. Zezyulina ◽  
Alexey V. Osipov ◽  
Dmitry A. Petrov ◽  
...  

Protective SiO2 coating deposited to iron microparticles is highly demanded both for the chemical and magnetic performance of the latter. Hydrolysis of tetraethoxysilane is the crucial method for SiO2 deposition from a solution. The capabilities of this technique have not been thoroughly studied yet. Here, two factors were tested to affect the chemical composition and the thickness of the SiO2 shell. It was found that an increase in the hydrolysis reaction time thickened the SiO2 shell from 100 to 200 nm. Moreover, a decrease in the acidity of the reaction mixture not only thickened the shell but also varied the chemical composition from SiO3.0 to SiO8.6. The thickness and composition of the dielectric layer were studied by scanning electron microscopy and energy-dispersive X-ray analysis. Microwave permeability and permittivity of the SiO2-coated iron particles mixed with a paraffin wax matrix were measured by the coaxial line technique. An increase in thickness of the silica layer decreased the real quasi-static permittivity. The changes observed were shown to agree with the Maxwell Garnett effective medium theory. The new method developed to fine-tune the chemical properties of the protective SiO2 shell may be helpful for new magnetic biosensor designs as it allows for biocompatibility adjustment.


Sign in / Sign up

Export Citation Format

Share Document