insect attractants
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 5)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Anna Jakubska-Busse ◽  
Izabela Czeluśniak ◽  
Michał J. Kobyłka ◽  
Marek Hojniak

Abstract Background The flowers of some species of orchids produce nectar as a reward for pollination, the process of transferring pollen from flower to flower. Epipactis albensis is an obligatory autogamous species, does not require the presence of insects for pollination, nevertheless, it has not lost the ability to produce nectar, the chemical composition of which we examined by gas chromatography-mass spectrometry (GC-MS) method for identification of potential insect attractants. Results During five years of field research, we did not observe any true pollinating insects visiting the flowers of this species, only accidental insects as ants and aphids. As a result of our studies we find that this self-pollinating orchid produces in nectar inter alia aliphatic saturated and unsaturated aldehydes such as i.e. nonanal (pelargonal) and 2-pentenal as well as aromatic ones (i.e. syringaldehyde, hyacinthin). The nectar is low in alkenes, which may explain the absence of pollinating insects. Moreover, vanillin and eugenol derivatives, well-known as important scent compounds were also identified, but the list of chemical compounds is much poorer compared with a closely related species, insect-pollinating E. helleborine. Conclusion Autogamy is a reproductive mechanism employed by many flowering plants, including the orchid genus Epipactis, as adaptation to grow in habitats where pollinating insects are rare observed due to the lack of nectar-producing plants they feed on. The production of numerous chemical attractants by self-pollinated E. albensis confirms the evolutionary secondary process, i.e. transition from ancestral insect-pollinating species to obligatory autogamous.


2019 ◽  
Vol 85 (21) ◽  
Author(s):  
Joel Ljunggren ◽  
Felipe Borrero-Echeverry ◽  
Amrita Chakraborty ◽  
Tobias U. T. Lindblom ◽  
Erik Hedenström ◽  
...  

ABSTRACT Yeasts form mutualistic interactions with insects. Hallmarks of this interaction include provision of essential nutrients, while insects facilitate yeast dispersal and growth on plant substrates. A phylogenetically ancient chemical dialogue coordinates this interaction, where the vocabulary, the volatile chemicals that mediate the insect response, remains largely unknown. Here, we used gas chromatography-mass spectrometry, followed by hierarchical cluster and orthogonal partial least-squares discriminant analyses, to profile the volatomes of six Metschnikowia spp., Cryptococcus nemorosus, and brewer’s yeast (Saccharomyces cerevisiae). The yeasts, which are all found in association with insects feeding on foliage or fruit, emit characteristic, species-specific volatile blends that reflect the phylogenetic context. Species specificity of these volatome profiles aligned with differential feeding of cotton leafworm (Spodoptera littoralis) larvae on these yeasts. Bioactivity correlates with yeast ecology; phylloplane species elicited a stronger response than fruit yeasts, and larval discrimination may provide a mechanism for establishment of insect-yeast associations. The yeast volatomes contained a suite of insect attractants known from plant and especially floral headspace, including (Z)-hexenyl acetate, ethyl (2E,4Z)-deca-2,4-dienoate (pear ester), (3E)-4,8-dimethylnona-1,3,7-triene (DMNT), linalool, α-terpineol, β-myrcene, or (E,E)-α-farnesene. A wide overlap of yeast and plant volatiles, notably floral scents, further emphasizes the prominent role of yeasts in plant-microbe-insect relationships, including pollination. The knowledge of insect-yeast interactions can be readily brought to practical application, as live yeasts or yeast metabolites mediating insect attraction provide an ample toolbox for the development of sustainable insect management. IMPORTANCE Yeasts interface insect herbivores with their food plants. Communication depends on volatile metabolites, and decoding this chemical dialogue is key to understanding the ecology of insect-yeast interactions. This study explores the volatomes of eight yeast species which have been isolated from foliage, from flowers or fruit, and from plant-feeding insects. These yeasts each release a rich bouquet of volatile metabolites, including a suite of known insect attractants from plant and floral scent. This overlap underlines the phylogenetic dimension of insect-yeast associations, which according to the fossil record long predate the appearance of flowering plants. Volatome composition is characteristic for each species, aligns with yeast taxonomy, and is further reflected by a differential behavioral response of cotton leafworm larvae, which naturally feed on foliage of a wide spectrum of broad-leaved plants. Larval discrimination may establish and maintain associations with yeasts and is also a substrate for designing sustainable insect management techniques.


2019 ◽  
Author(s):  
Joel Ljunggren ◽  
Felipe Borrero-Echeverry ◽  
Amrita Chakraborty ◽  
Tobias U. Lindblom ◽  
Erik Hedenström ◽  
...  

ABSTRACTYeasts form mutualistic interactions with insects. Hallmarks of this interaction include provision of essential nutrients, while insects facilitate yeast dispersal and growth on plant substrates. A phylogenetically ancient, chemical dialogue coordinates this interaction, where the vocabulary, the volatile chemicals that mediate the insect response, remains largely unknown. Here, we employed gas chromatography-mass spectrometry (GC-MS), followed by hierarchical cluster (HCA) and orthogonal partial least square discriminant analysis (OPLS-DA), to profile the volatomes of six Metschnikowia spp., Cryptococcus nemorosus and brewer’s yeast Saccharomyces cerevisiae. The yeasts, which are all found in association with insects feeding on foliage or fruit, emit characteristic, species-specific volatile blends that reflect the phylogenetic context. Species-specificity of these volatome profiles aligned with differential feeding of cotton leafworm larvae Spodoptera littoralis on these yeasts. Bioactivity correlates with yeast ecology; phylloplane species elicited a stronger response than fruit yeasts, and larval discrimination may provide a mechanism for establishment of insect-yeast associations. The yeast volatomes contained a suite of insect attractants known from plant and especially floral headspace, including (Z)-hexenyl acetate, ethyl (2E,4Z)-deca-2,4-dienoate (pear ester), (3E)-4,8-dimethylnona-1,3,7-triene (DMNT), linalool, α-terpineol, β-myrcene or (E,E)-a-farnesene. A wide overlap of yeast and plant volatiles, notably floral scents further emphasizes the prominent role of yeasts in plant-microbe-insect relationships including pollination. The knowledge of insect-yeast interactions can be readily brought to practical application, live yeasts or yeast metabolites mediating insect attraction provide an ample toolbox for the development of sustainable insect management.IMPORTANCEYeasts interface insect herbivores with their food plants. Communication depends on volatile metabolites, and decoding this chemical dialogue is key to understanding the ecology of insect-yeast interactions. This study explores the volatomes of eight yeast species which have been isolated from foliage, flowers or fruit, and from plant-feeding insects. They each release a rich bouquet of volatile metabolites, including a suite of known insect attractants from plant and floral scent. This overlap underlines the phylogenetic dimension of insect-yeast associations, which according to the fossil record, long predate the appearance of flowering plants. Volatome composition is characteristic for each species, aligns with yeast taxonomy, and is further reflected by a differential behavioural response of cotton leafworm larvae, which naturally feed on foliage of a wide spectrum of broad-leaved plants. Larval discrimination may establish and maintain associations with yeasts and is also a substrate for designing sustainable insect management techniques.


HortScience ◽  
2016 ◽  
Vol 51 (5) ◽  
pp. 525-529
Author(s):  
Nathan J. Herrick ◽  
Raymond A. Cloyd

Plant-derived essential oils or extracts and their associated volatiles can serve as insect attractants to enhance adult captures when used as whole plants or extracts that are incorporated onto colored sticky traps. In our study, we initially assessed the attractiveness of western flower thrips (WFT) (Frankliniella occidentalis) adults to vanilla extract in the laboratory using choice and no-choice experiments by comparing one (0.05 mL) and two (0.10 mL) drops of vanilla extract (0.029% and 0.059%, respectively). In the choice experiments, a drop of water and drop of vanilla extract were placed on opposite sides of a petri dish. One WFT was placed in the center of the petri dish, and observations were made on whether there was preferential movement to the water or vanilla extract. For the no-choice experiments, one petri dish only contained a drop of water, whereas another petri dish only contained a drop of vanilla extract. One WFT was placed into each petri dish and movement was observed to assess whether the WFT moved toward the water or to the vanilla extract. We then determined if yellow sticky cards containing vanilla extract were more attractive to WFT adults than those with water, by using the number of adults captured on yellow sticky cards as an estimate under greenhouse conditions. Western flower thrips adults were not attracted to vanilla extract based on the results associated with the choice and no-choice tests conducted under laboratory conditions with no differences in selection between vanilla extract and water. In addition, there was no evidence that inoculating yellow sticky cards with vanilla extract enhanced the number of adults captured on yellow sticky cards. Overall, the use of vanilla extract in attracting WFT adults to yellow sticky cards is not justifiable under the parameters of our study.


Sign in / Sign up

Export Citation Format

Share Document