classical statistical mechanics
Recently Published Documents


TOTAL DOCUMENTS

266
(FIVE YEARS 25)

H-INDEX

30
(FIVE YEARS 1)

2022 ◽  
pp. 183-217
Author(s):  
Pranab Sarkar ◽  
Sankar Prasad Bhattacharyya

2021 ◽  
Author(s):  
Ananth Govind Rajan

The combined first and second law of thermodynamics for a closed system is written as dE=TdS - PdV, where E is the internal energy, S is the entropy, V is the volume, T is the temperature, and P is the pressure of the system. This equation forms the basis for understanding physical phenomena ranging from heat engines to chemical reactors to biological systems. In this work, we present a pedagogical approach to obtain the combined first and second law of thermodynamics beginning with the principles of classical statistical mechanics, thereby establishing a fundamental link between energy conservation, heat, work, and entropy. We start with Boltzmann's entropy formula and use differential calculus to establish this link. Some new aspects of this work include the use of the microcanonical ensemble, which is typically considered to be intractable, to write the partition function for a general system of matter; deriving the average of the inverse kinetic energy, which appears in the microcanonical formulation of the combined first and second law, and showing that it is equal to the inverse of the average kinetic energy; obtaining an expression for the pressure of a system involving many-body interactions; and introducing the system pressure in the combined first and second law via Clausius's virial theorem. Overall, this work informs the derivation of fundamental thermodynamic relations from an understanding of classical statistical mechanics. The material presented herein could be incorporated into senior undergraduate/graduate-level courses in statistical thermodynamics and/or molecular simulations.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 968
Author(s):  
Fritiof Wallentin

It is shown that the hallmark quantum phenomenon of contextuality is present in classical statistical mechanics (CSM). It is first shown that the occurrence of contextuality is equivalent to there being observables that can differentiate between pure and mixed states. CSM is formulated in the formalism of quantum mechanics (FQM), a formulation commonly known as the Koopman–von Neumann formulation (KvN). In KvN, one can then show that such a differentiation between mixed and pure states is possible. As contextuality is a probabilistic phenomenon and as it is exhibited in both classical physics and ordinary quantum mechanics (OQM), it is concluded that the foundational issues regarding quantum mechanics are really issues regarding the foundations of probability.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 875
Author(s):  
Peter Enders

During the physical foundation of his radiation formula in his December 1900 talk and subsequent 1901 article, Planck refers to Boltzmann’s 1877 combinatorial-probabilistic treatment and obtains his quantum distribution function, while Boltzmann did not. For this, Boltzmann’s memoirs are usually ascribed to classical statistical mechanics. Agreeing with Bach, it is shown that Boltzmann’s 1868 and 1877 calculations can lead to a Planckian distribution function, where those of 1868 are even closer to Planck than that of 1877. Boltzmann’s and Planck’s calculations are compared based on Bach’s three-level scheme ‘configuration–occupation–occupancy’. Special attention is paid to the concepts of interchangeability and the indistinguishability of particles and states. In contrast to Bach, the level of exposition is most elementary. I hope to make Boltzmann’s work better known in English and to remove misunderstandings in the literature.


Author(s):  
C. Huang ◽  
Yong-Chang Huang ◽  
Yi-You Nie

This paper derives measurement and identical principles, then makes the two principles into measurement and identical theorems of quantum mechanics, plus the three theorems derived earlier, we deduce the axiom system of current quantum mechanics, the general quantum theory no axiom presumptions not only solves the crisis to understand in current quantum mechanics, but also obtains new discoveries, e.g., discovers the velocities of quantum collapse and entanglement are instantaneously infinitely large. We deduce the general Schrȍdinger equation of any n particles from two aspects, and the wave function not only has particle properties of the complex square root state vector of the classical probability density of any n particles, but also has the plane wave properties of any n particles. Thus, the current crisis of the dispute about the origin of wave- particle duality of any n microscopic particles is solved. We display the classical locality and quantum non-locality for any n particle system, show entanglement origins, and discover not only any n-particle wave function system has the original, superposition and across entanglements, but also the entanglements are of interactions preserving conservation or correlation, three kinds of entanglements directly give lots of entanglement sources. This paper discovers, one of two pillars of modern physics, quantum mechanics of any n particle system is a generalization ( mechanics ) theory of the complex square root ( of real density function ) of classical statistical mechanics, any n particle system’s quantum mechanics of being just a generalization theory of the complex square root of classical statistical mechanics is both a revolutionary discovery and key new physics, which are influencing people’s philosophical thinking for modern physics, solve all the crisises in current quantum theories, quantum information and so on, and make quantum theory have scientific solid foundations checked, no basic axiom presumption and no all quantum strange incomprehensible properties, because classical statistical mechanics and its complex square root have scientific solid foundations checked. Thus, all current studies on various entanglements and their uses to quantum computer, quantum information and so on must be further updated and classified by the new entanglements. This and our early papers derive quantum physics, solve all crisises of basses of quantum mechanics, e.g., wave-particle duality & the first quantization origins, quantum nonlocality, entanglement origins & classifications, wave collapse and so on.Key words: quantum mechanics, operator, basic presumptions, wave-particle duality, principle of measurement, identical principle, superposition principle of states, entanglement origin, quantum communication, wave collapse, classical statistical mechanics, classical mechanics


Author(s):  
C. Huang ◽  
Yong-Chang Huang ◽  
Jia-Min Song

Density distribution function of classical statistical mechanics is generally generalized as a product of a general complex function and its complex Hermitian conjugate function, and the average of classical statistical mechanics is generalized as the average of the quantum mechanics. Furthermore, this paper derives three ones of the five axiom presumptions of quantum mechanics, e.g., deduces Schrȍdinger equation by two general ways, makes the three axiom presumptions into three theorems of quantum mechanics, not only solves the crisis to hard understand, but also gets new theories and new discoveries, e.g., this paper solves the crisis of the origin of the wave-particle duality, derives operators, eigenvalues and eigenstates, deduces commutation relations for coordinate and momentum as well as the time and energy, and discovers quantum mechanics is just a generalization ( mechanics ) theory of the complex square root of ( real density function of ) classical statistical mechanics. Quantum mechanics being just a generalization theory of the complex square root of classical statistical mechanics is both new physics and revolutionary discovery, which are affecting people’s deep philosophical thinking for modern physics development, solve all the crisises of quantum mechanics, quantum information and so on, and make quantum mechanics have scientific solid bases being checked and both no basic axiom presumption and no all the quantum strange incomprehensible properties, because classical statistical mechanics and the complex square root of classical statistical mechanics have the scientific solid bases being checked. In addition, this paper discovers the reason no taking the time derivative of space coordinates in Schrȍdinger equation. Therefore, this paper gives solution to the crisis of the first quantization origin, and mainly deduces quantum physics no all the quantum current strange incomprehensible properties.


Sign in / Sign up

Export Citation Format

Share Document