highly nonlinear fiber
Recently Published Documents


TOTAL DOCUMENTS

323
(FIVE YEARS 31)

H-INDEX

24
(FIVE YEARS 2)

Optik ◽  
2021 ◽  
pp. 166948
Author(s):  
Vishal Sharma ◽  
Surinder Singh ◽  
Lovkesh ◽  
Elena A. Anashkina ◽  
Alexey V. Andrianov

Photonics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 45
Author(s):  
Jingjing Wang ◽  
Yongtao Du ◽  
Chunhao Liang ◽  
Zhong Li ◽  
Jing Fang

This paper presents the quantitative measurement through an experimental test of 640 Gbps 16-QAM coherent-optical orthogonal frequency-division multiplexing (CO-OFDM) over 800 km optical fiber with mid-link optical phase conjugation (OPC) using highly nonlinear fiber (HNLF). The first focus is the OPC parameter optimization, including the optimization of HNLF length and signal/pump power that inputs into OPC. Four different HNLFs, as the illustrative examples, are investigated. The second focus is to investigate the effects of fiber dispersion, nonlinearity, and amplified spontaneous emission (ASE) noise on the long-haul transmission of 16-QAM CO-OFDM signal, and the OPC compensation efficiency. The performance evaluation focuses on the conversion efficiency (CE), received signal constellation, Q-factor improvement, and bit error rate (BER) at the receiver end. Such end-to-end performance evaluation is important because the 16-QAM CO-OFDM signal status is heterogeneous and the mitigation of transmission impairments to the signal is still unclear. The OPC parametric optimization is achieved experimentally using commercially available HNLFs with different scenarios and the numerical results are interpreted in conjunction with simulations.


2021 ◽  
Vol 51 (2) ◽  
Author(s):  
F. Wang ◽  
W. Kang

A wideband optical frequency comb (OFC) generator using a fiber re-circulating loop (FRL) including a phase modulator and optical amplifier, cascaded with a spectrum expander containing a high-power erbium-doped fiber amplifier and highly nonlinear fiber (HNLF) is proposed and experimentally demonstrated, in which the FRL is used as a source to generate seed comb lines, and then generated seed comb lines are extended to a wideband optical frequency comb using cascaded four-wave mixing in the HNLF. Only using one stage spectrum expander, a stable 20-GHz optical comb with 201 comb lines within 30-dB power deviation, spanning 40-nm bandwidth, is achieved. The results show that the HNLF has unique ability to broaden output spectrum from the FRL. In addition, an optical frequency comb is dramatically broadened, which may be predicted by optimizing gain and dispersion of the FRL or configuration of the spectrum expander, or both.


Sign in / Sign up

Export Citation Format

Share Document