mean high water
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 1)

2020 ◽  
Vol 12 (14) ◽  
pp. 2189 ◽  
Author(s):  
Chao Huang ◽  
Hongmei Zhang ◽  
Jianhu Zhao

To meet the needs of coastline efficient extraction and dynamic monitoring, this paper proposes a new method for coastline extraction by combining the tidal level and the digital elevation model (DEM) of the coastal zone from tilt photography. Firstly, the DEM of coastal zone was obtained by using unmanned aerial vehicle (UAV) tilt photography; at the same time, the accuracy of aerial triangulation(AT) is improved referencing to the constraint of water boundary points, and then the mean high water spring tide was obtained by combining tidal harmonic analysis and Global Navigation Satellite System (GNSS) tidal level. Finally, the coastline and the dynamic water-surface line are extracted from the DEM of the coastal zone by tracking the contour lines with the elevation of the mean high water springs (MHWS) and the instantaneous sea-surface elevation, respectively. The experiments carried out in the coastal zones of Liaoning Province, China, proved the proposed method and achieved better than 0.2 m of horizontal position accuracy and 0.1 m of the vertical accuracy.


2019 ◽  
Author(s):  
LeeAnn Haaf ◽  
Elizabeth Burke Watson ◽  
Tracy Elsey-Quirk ◽  
Kirk Raper ◽  
Angela Padeletti ◽  
...  

AbstractTidal marshes protect coastal communities from the effects of sea level rise and storms, yet they are vulnerable to prolonged inundation and submergence. Uncertainty regarding their vulnerability to sea level rise motivated the establishment of a monitoring network in the Delaware Estuary and Barnegat Bay. Using data collected through these efforts, we determined whether rates of tidal marsh sediment accumulation and elevation change exceeded local sea level rise and how these dynamics varied along geographic and environmental gradients. Marker horizons, surface elevation tables, elevation surveys, water level data, and water column suspended sediment concentrations were used to evaluate sea level rise vulnerability. Of 32 study sites, 75% had elevation change that did not keep pace with long-term rising sea levels (1969–2018) and 94% did not keep pace with recent sea level rise (2000–2018). Mean high water rose most rapidly in the freshwater tidal portion of the Delaware Estuary with rates nearing 1 cm yr-1 from 2000–2018. We noted that greater sediment accumulation rates occurred in marshes with large tidal ranges, low elevations, and high water column suspended sediment concentrations. We found correlations between rates of shallow subsidence, increasing salinity, and decreasing tidal range. Marsh elevation and water level surveys revealed significant variability in elevation capital and summer flooding patterns (12–67% inundation). However, rapid increases in mean high water over the past 19 years suggests that all marsh platforms currently sit at or below mean high water. Overall, these data suggest that tidal marshes in the Delaware Estuary and Barnegat Bay are vulnerable to submergence by current rates of sea-level rise. While we observed variability in marsh elevation capital, the absence of strong correlations between elevation trends and environmental parameters makes it difficult to identify clear patterns of sea level rise vulnerability among wetlands.


Sign in / Sign up

Export Citation Format

Share Document