prepotent responses
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 9)

H-INDEX

17
(FIVE YEARS 2)

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Guoliang Chen ◽  
Yansong Li ◽  
Zhao Dong ◽  
Rongfei Wang ◽  
Dengfa Zhao ◽  
...  

Abstract Background Migraine is characterized by a hypersensitivity to environmental stimulation which climaxes during headache attacks but persists during attack-free period. Despite ongoing debates about the nature of the mechanisms giving rise to this abnormality, the presence of deficient inhibitory cortical processes has been proposed to be one possible mechanism underlying its pathogenesis. Empirical evidence supporting this claim is mainly based on previous accounts showing functional cortical disexcitability in the sensory domain. Considering that a general inhibitory control process can play an important role across early to later stage of information processing, this may indicate the important role other dimensions of inhibitory control can play in migraine disability. The present study examined the pathophysiological features of inhibitory control that takes place during suppression of prepotent responses in migraineurs. Methods Twenty-two patients with migraine without aura (mean age = 30.86 ± 5.69 years; 19 females) during the interictal period and 25 healthy controls (mean age = 30.24 ± 3.52 years; 18 females) were recruited. We used a stop signal task in combination with event-related potentials (ERPs) to examine participants’ neural activity supporting response inhibition. Results Behaviorally, migraineurs exhibited prolonged stop signal reaction times relative to healthy controls. At the neural level, the amplitude of the stop-N2 over fronto-central, central and centro-parietal scalp regions, a component of the ERPs related to conflict monitoring during early, non-motoric stages of inhibition, was significantly increased in migraineurs. Meanwhile, the amplitude of the stop-P3 over central and centro-parietal scalp regions, a component of the ERPs reflecting late-stage inhibition of the motor system and cognitive evaluation of motor inhibition, was also significantly increased in migraineurs. Ultimately, our time-frequency analysis further revealed increased delta activity in migraineurs. Conclusions Consistent with the theory that alterations in cognitive cortical processes are a key signature of migraine, our findings revealed an abnormal state of suppressing prepotent responses in migraineurs, which can be attributed to cortical disexcitability of the pre-frontal executive network and centro-parietal sensorimotor network. These novel findings extend to show the existence of dysfunctional inhibition control that occurs during suppression of prepotent responses in migraneurs.


2020 ◽  
Author(s):  
Guoliang Chen ◽  
Yansong Li ◽  
Zhao Dong ◽  
Rongfei Wang ◽  
Dengfa Zhao ◽  
...  

Abstract Background: Migraine is characterized by a hypersensitivity to environmental stimulation which climaxes during headache attacks but persists during attack-free period. Despite ongoing debates about the nature of the mechanisms giving rise to this abnormality, the presence of deficient inhibitory cortical processes has been proposed to be one possible mechanism underlying its pathogenesis. Empirical evidence supporting this claim is mainly based on previous accounts showing functional cortical disexcitability in the sensory domain. Considering that a general inhibitory control process can play an important role across early to later stage of information processing, this may indicate the important role other dimensions of inhibitory control can play in migraine disability. The present study examined the pathophysiological features of inhibitory control that takes place during suppression of prepotent responses in migraineurs.Methods: Twenty-two patients with migraine without aura (mean age = 30.86 ± 5.69 years; 19 females) during the interictal period and 25 healthy controls (mean age = 30.24 ± 3.52 years; 18 females) were recruited. We used a stop signal task in combination with event-related potentials (ERPs) to examine participants’ neural activity supporting response inhibition.Results: Behaviorally, migraineurs exhibited prolonged stop signal reaction times relative to healthy controls. At the neural level, the amplitude of the stop-N2 over fronto-central, central and centro-parietal scalp regions, a component of the ERPs related to conflict monitoring during early, non-motoric stages of inhibition, was significantly increased in migraineurs. Meanwhile, the amplitude of the stop-P3 over central and centro-parietal scalp regions, a component of the ERPs reflecting late-stage inhibition of the motor system and cognitive evaluation of motor inhibition, was also significantly increased in migraineurs. Ultimately, our time-frequency analysis further revealed increased delta activity in migraineurs.Conclusions: Consistent with the theory that alterations in cognitive cortical processes are a key signature of migraine, our findings revealed an abnormal state of suppressing prepotent responses in migraineurs, which can be attributed to cortical disexcitability of the pre-frontal executive network and centro-parietal sensorimotor network. These novel findings extend to show the existence of dysfunctional inhibition control that occurs during suppression of prepotent responses in migraneurs.


2020 ◽  
Author(s):  
Guoliang Chen ◽  
Yansong Li ◽  
Zhao Dong ◽  
Rongfei Wang ◽  
Dengfa Zhao ◽  
...  

Abstract Background: Migraine is characterized by a hypersensitivity to environmental stimulation which climaxes during headache attacks but persists during attack-free period. Despite ongoing debates about the nature of the mechanisms giving rise to this abnormality, the presence of deficient inhibitory cortical processes has been proposed to be one possible mechanism underlying its pathogenesis. Empirical evidence supporting this claim is mainly based on previous accounts showing functional cortical disexcitability in the sensory domain. Considering that a general inhibitory control process can play an important role across early to later stage of information processing, this may indicate the important role other dimensions of inhibitory control can play in migraine disability. The present study examined the pathophysiological features of inhibitory control that takes place during suppression of prepotent responses in migraineurs. Methods: Twenty-two patients with migraine without aura (mean age = 30.86 ± 5.69 years; 19 females) during the interictal period and 25 healthy controls (mean age = 30.24 ± 3.52 years; 18 females) were recruited. We used a stop signal task in combination with event-related potentials (ERPs) to examine participants’ neural activity supporting response inhibition. Results: Behaviorally, migraineurs exhibited prolonged stop signal reaction times relative to healthy controls. At the neural level, the amplitude of the stop-N2 over fronto-central, central and centro-parietal scalp regions, a component of the ERPs related to conflict monitoring during early, non-motoric stages of inhibition, was significantly increased in migraineurs. Meanwhile, the amplitude of the stop-P3 over central and centro-parietal scalp regions, a component of the ERPs reflecting late-stage inhibition of the motor system and cognitive evaluation of motor inhibition, was also significantly increased in migraineurs. Ultimately, our time-frequency analysis further revealed increased delta activity in migraineurs. Conclusions: Consistent with the theory that alterations in cognitive cortical processes are a key signature of migraine, our findings revealed an abnormal state of suppressing prepotent responses in migraineurs, which can be attributed to cortical disexcitability of the pre-frontal executive network and centro-parietal sensorimotor network. These novel findings extend to show the existence of dysfunctional inhibition control that occurs during suppression of prepotent responses in migraneurs.nctional inhibition control that occurs during suppression of prepotent responses in migraneurs.


10.2196/17810 ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. e17810 ◽  
Author(s):  
Maximilian Achim Friehs ◽  
Martin Dechant ◽  
Sarah Vedress ◽  
Christian Frings ◽  
Regan Lee Mandryk

Background A lack of ability to inhibit prepotent responses, or more generally a lack of impulse control, is associated with several disorders such as attention-deficit/hyperactivity disorder and schizophrenia as well as general damage to the prefrontal cortex. A stop-signal task (SST) is a reliable and established measure of response inhibition. However, using the SST as an objective assessment in diagnostic or research-focused settings places significant stress on participants as the task itself requires concentration and cognitive effort and is not particularly engaging. This can lead to decreased motivation to follow task instructions and poor data quality, which can affect assessment efficacy and might increase drop-out rates. Gamification—the application of game-based elements in nongame settings—has shown to improve engaged attention to a cognitive task, thus increasing participant motivation and data quality. Objective This study aims to design a gamified SST that improves participants’ engagement and validate this gamified SST against a standard SST. Methods We described the design of our gamified SST and reported on 2 separate studies that aim to validate the gamified SST relative to a standard SST. In study 1, a within-subject design was used to compare the performance of the SST and a stop-signal game (SSG). In study 2, we added eye tracking to the procedure to determine if overt attention was affected and aimed to replicate the findings from study 1 in a between-subjects design. Furthermore, in both studies, flow and motivational experiences were measured. Results In contrast, the behavioral performance was comparable between the tasks (P<.87; BF01=2.87), and the experience of flow and intrinsic motivation were rated higher in the SSG group, although this difference was not significant. Conclusions Overall, our findings provide evidence that the gamification of SST is possible and that the SSG is enjoyed more. Thus, when participant engagement is critical, we recommend using the SSG instead of the SST.


2020 ◽  
Author(s):  
Guoliang Chen ◽  
Yansong Li ◽  
Dong Zhao ◽  
Rongfei Wang ◽  
Dengfa Zhao ◽  
...  

Abstract Background Migraine is characterized by a hypersensitivity to environmental stimulation which climaxes during headache attacks but persists during attack-free period. Despite ongoing debates about the nature of the mechanisms giving rise to this abnormality, the presence of deficient inhibitory cortical processes has been proposed to be one possible mechanism underlying its pathogenesis. Empirical evidence supporting this notion is mainly based on previous findings showing functional cortical hyperexcitability in the sensory domain. Considering that a general inhibitory control process can play an important role across early to later stage of information processing, this may in turn indicate the important role other dimensions of inhibitory control can play in migraine disability. To this end, the present study was designed to examine the pathophysiological basis of inhibitiory control that takes place during suppression of prepotent responses. Methods Twenty-two patients with migraine without aura (mean age = 30.86 ± 5.69 years; 19 females) during the interictal period and 25 healthy controls (mean age = 30.24 ± 3.52 years; 18 females) were recruited. We employed a stop signal task in combination with event-related potentials (ERPs) to examine participants’ neural activity supporting response inhibition. Results Behaviorally, migraineurs exhibited prolonged reaction times to the stop signal relative to healthy controls. At the neural level, the amplitude of the stop-N2, a component of the ERPs related to conflict monitoring during early, non-motoric stages of inhibition, was significantly increased in migraineurs. Meanwhile, the amplitude of the stop-P3, a component of the ERPs reflecting late-stage inhibition of the motor system itself and cognitive evaluation of motor inhibition, was also significantly increased in migraineurs. Moreover, our time-frequency analysis has further revealed increased delta activity in the time window used to extract the mean amplitude of the stop-P3 in migraineurs relative to healthy controls. Conclusions Consistent with the theory that cortical hyperexcitability is a key signature of migraine, these findings revealed a decrease in suppressing prepotent responses in migraineurs, which can be attributable to cortical hyperexcitability. These novel findings imply the existence of dysfunctional inhibitory control at later stage of information processing.


2020 ◽  
Vol 19 (6) ◽  
pp. 788-798 ◽  
Author(s):  
Daniela Mannarelli ◽  
Caterina Pauletti ◽  
Alessia Petritis ◽  
Roberto Delle Chiaie ◽  
Antonio Currà ◽  
...  

Abstract Response inhibition as an executive function refers to the ability to suppress inappropriate but prepotent responses. Several brain regions have been implicated in the process underlying inhibitory control, including the cerebellum. The aim of the present study was to explore the role of the cerebellum in executive functioning, particularly in response inhibition. For this purpose, we transitorily inhibited cerebellar activity by means of cathodal tDCS and studied the effects of this inhibition on ERP components elicited during a Go/NoGo task in healthy subjects. Sixteen healthy subjects underwent a Go/NoGo task prior to and after cathodal and sham cerebellar tDCS in separate sessions. A reduction in N2-NoGo amplitude and a prolongation in N2-NoGo latency emerged after cathodal tDCS whereas no differences were detected after sham stimulation. Moreover, commission errors in NoGo trials were significantly higher after cathodal tDCS than at the basal evaluation. No differences emerged between performances in Go trials and those after sham stimulation. These data indicate that cerebellar inhibition following cathodal stimulation alters the ability to allocate attentional resources to stimuli containing conflict information and the inhibitory control. The cerebellum may regulate the attentional mechanisms of stimulus orientation and inhibitory control both directly, by making predictions of errors or behaviors related to errors, and indirectly, by controlling the functioning of the cerebral cortical areas involved in the perception of conflict signals and of the basal ganglia involved in the inhibitory control of movement.


2020 ◽  
Author(s):  
Maximilian Achim Friehs ◽  
Martin Dechant ◽  
Sarah Vedress ◽  
Christian Frings ◽  
Regan Lee Mandryk

BACKGROUND A lack of ability to inhibit prepotent responses, or more generally a lack of impulse control, is associated with several disorders such as attention-deficit/hyperactivity disorder and schizophrenia as well as general damage to the prefrontal cortex. A stop-signal task (SST) is a reliable and established measure of response inhibition. However, using the SST as an objective assessment in diagnostic or research-focused settings places significant stress on participants as the task itself requires concentration and cognitive effort and is not particularly engaging. This can lead to decreased motivation to follow task instructions and poor data quality, which can affect assessment efficacy and might increase drop-out rates. Gamification—the application of game-based elements in nongame settings—has shown to improve engaged attention to a cognitive task, thus increasing participant motivation and data quality. OBJECTIVE This study aims to design a gamified SST that improves participants’ engagement and validate this gamified SST against a standard SST. METHODS We described the design of our gamified SST and reported on 2 separate studies that aim to validate the gamified SST relative to a standard SST. In study 1, a within-subject design was used to compare the performance of the SST and a stop-signal game (SSG). In study 2, we added eye tracking to the procedure to determine if overt attention was affected and aimed to replicate the findings from study 1 in a between-subjects design. Furthermore, in both studies, flow and motivational experiences were measured. RESULTS In contrast, the behavioral performance was comparable between the tasks (<i>P</i>&lt;.87; BF01=2.87), and the experience of flow and intrinsic motivation were rated higher in the SSG group, although this difference was not significant. CONCLUSIONS Overall, our findings provide evidence that the gamification of SST is possible and that the SSG is enjoyed more. Thus, when participant engagement is critical, we recommend using the SSG instead of the SST.


2019 ◽  
Vol 31 (4) ◽  
pp. 214-225 ◽  
Author(s):  
Niklas Johannes ◽  
Harm Veling ◽  
Thijs Verwijmeren ◽  
Moniek Buijzen

Abstract. Because more and more young people are constantly presented with the opportunity to access information and connect to others via their smartphones, they report to be in a state of permanent alertness. In the current study, we define such a state as smartphone vigilance, an awareness that one can always get connected to others in combination with a permanent readiness to respond to incoming smartphone notifications. We hypothesized that constantly resisting the urge to interact with their phones draws on response inhibition, and hence interferes with students’ ability to inhibit prepotent responses in a concurrent task. To test this, we conducted a preregistered experiment, employing a Bayesian sequential sampling design, where we manipulated smartphone visibility and smartphone notifications during a stop-signal task that measures the ability to inhibit prepotent responses. The task was constructed such that we could disentangle response inhibition from action selection. Results show that the mere visibility of a smartphone is sufficient to experience vigilance and distraction, and that this is enhanced when students receive notifications. Curiously enough, these strong experiences were unrelated to stop-signal task performance. These findings raise new questions about when and how smartphones can impact performance.


2019 ◽  
Vol 31 (9) ◽  
pp. 1430-1442 ◽  
Author(s):  
Witold X. Chmielewski ◽  
Christian Beste

The ability to inhibit prepotent responses is a central facet of cognitive control. However, the role of perceptual factors in response inhibition processes is still poorly understood and an underrepresented field of research. In the current study, we focus on the role of conflicts between perceptual stimulus features (so-called S-S conflicts) for response inhibition. We introduce a novel semantic Stroop Condition task and analyze EEG data using source localization and temporal EEG signal decomposition methods to delineate the neural mechanisms how semantic S-S conflicts modulate response inhibition. We show that semantic conflicts enhance response inhibition performance by modulating neural processes relating to conflict resolution mechanisms in the middle and inferior frontal cortex, as well as the ACC. Opposed to that, Stroop-like (S-S) conflicts compromise response execution by affecting decision processes in inferior parietal cortices. The data suggest that when action control processes and their neurophysiological correlates depend on regions specialized in the processing of semantic conflicts, there is an improvement in response inhibition. The results show that Stroop-like semantic conflicts have opposite effects depending on whether a response has to be executed or inhibited. These opposing effects are then also associated with different functional–neuroanatomical structures. The results of the study show mechanisms by which stimulus-related processes influence mechanisms of response control.


Author(s):  
Michelle Comas ◽  
Kristin Valentino ◽  
Anne F. Johnson ◽  
Bradley S. Gibson ◽  
Courtney Taylor

Sign in / Sign up

Export Citation Format

Share Document