scholarly journals Response inhibition alterations in migraine: Evidence from event-related potentials and evoked oscillations

2020 ◽  
Author(s):  
Guoliang Chen ◽  
Yansong Li ◽  
Zhao Dong ◽  
Rongfei Wang ◽  
Dengfa Zhao ◽  
...  

Abstract Background: Migraine is characterized by a hypersensitivity to environmental stimulation which climaxes during headache attacks but persists during attack-free period. Despite ongoing debates about the nature of the mechanisms giving rise to this abnormality, the presence of deficient inhibitory cortical processes has been proposed to be one possible mechanism underlying its pathogenesis. Empirical evidence supporting this claim is mainly based on previous accounts showing functional cortical disexcitability in the sensory domain. Considering that a general inhibitory control process can play an important role across early to later stage of information processing, this may indicate the important role other dimensions of inhibitory control can play in migraine disability. The present study examined the pathophysiological features of inhibitory control that takes place during suppression of prepotent responses in migraineurs.Methods: Twenty-two patients with migraine without aura (mean age = 30.86 ± 5.69 years; 19 females) during the interictal period and 25 healthy controls (mean age = 30.24 ± 3.52 years; 18 females) were recruited. We used a stop signal task in combination with event-related potentials (ERPs) to examine participants’ neural activity supporting response inhibition.Results: Behaviorally, migraineurs exhibited prolonged stop signal reaction times relative to healthy controls. At the neural level, the amplitude of the stop-N2 over fronto-central, central and centro-parietal scalp regions, a component of the ERPs related to conflict monitoring during early, non-motoric stages of inhibition, was significantly increased in migraineurs. Meanwhile, the amplitude of the stop-P3 over central and centro-parietal scalp regions, a component of the ERPs reflecting late-stage inhibition of the motor system and cognitive evaluation of motor inhibition, was also significantly increased in migraineurs. Ultimately, our time-frequency analysis further revealed increased delta activity in migraineurs.Conclusions: Consistent with the theory that alterations in cognitive cortical processes are a key signature of migraine, our findings revealed an abnormal state of suppressing prepotent responses in migraineurs, which can be attributed to cortical disexcitability of the pre-frontal executive network and centro-parietal sensorimotor network. These novel findings extend to show the existence of dysfunctional inhibition control that occurs during suppression of prepotent responses in migraneurs.

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Guoliang Chen ◽  
Yansong Li ◽  
Zhao Dong ◽  
Rongfei Wang ◽  
Dengfa Zhao ◽  
...  

Abstract Background Migraine is characterized by a hypersensitivity to environmental stimulation which climaxes during headache attacks but persists during attack-free period. Despite ongoing debates about the nature of the mechanisms giving rise to this abnormality, the presence of deficient inhibitory cortical processes has been proposed to be one possible mechanism underlying its pathogenesis. Empirical evidence supporting this claim is mainly based on previous accounts showing functional cortical disexcitability in the sensory domain. Considering that a general inhibitory control process can play an important role across early to later stage of information processing, this may indicate the important role other dimensions of inhibitory control can play in migraine disability. The present study examined the pathophysiological features of inhibitory control that takes place during suppression of prepotent responses in migraineurs. Methods Twenty-two patients with migraine without aura (mean age = 30.86 ± 5.69 years; 19 females) during the interictal period and 25 healthy controls (mean age = 30.24 ± 3.52 years; 18 females) were recruited. We used a stop signal task in combination with event-related potentials (ERPs) to examine participants’ neural activity supporting response inhibition. Results Behaviorally, migraineurs exhibited prolonged stop signal reaction times relative to healthy controls. At the neural level, the amplitude of the stop-N2 over fronto-central, central and centro-parietal scalp regions, a component of the ERPs related to conflict monitoring during early, non-motoric stages of inhibition, was significantly increased in migraineurs. Meanwhile, the amplitude of the stop-P3 over central and centro-parietal scalp regions, a component of the ERPs reflecting late-stage inhibition of the motor system and cognitive evaluation of motor inhibition, was also significantly increased in migraineurs. Ultimately, our time-frequency analysis further revealed increased delta activity in migraineurs. Conclusions Consistent with the theory that alterations in cognitive cortical processes are a key signature of migraine, our findings revealed an abnormal state of suppressing prepotent responses in migraineurs, which can be attributed to cortical disexcitability of the pre-frontal executive network and centro-parietal sensorimotor network. These novel findings extend to show the existence of dysfunctional inhibition control that occurs during suppression of prepotent responses in migraneurs.


2020 ◽  
Author(s):  
Guoliang Chen ◽  
Yansong Li ◽  
Zhao Dong ◽  
Rongfei Wang ◽  
Dengfa Zhao ◽  
...  

Abstract Background: Migraine is characterized by a hypersensitivity to environmental stimulation which climaxes during headache attacks but persists during attack-free period. Despite ongoing debates about the nature of the mechanisms giving rise to this abnormality, the presence of deficient inhibitory cortical processes has been proposed to be one possible mechanism underlying its pathogenesis. Empirical evidence supporting this claim is mainly based on previous accounts showing functional cortical disexcitability in the sensory domain. Considering that a general inhibitory control process can play an important role across early to later stage of information processing, this may indicate the important role other dimensions of inhibitory control can play in migraine disability. The present study examined the pathophysiological features of inhibitory control that takes place during suppression of prepotent responses in migraineurs. Methods: Twenty-two patients with migraine without aura (mean age = 30.86 ± 5.69 years; 19 females) during the interictal period and 25 healthy controls (mean age = 30.24 ± 3.52 years; 18 females) were recruited. We used a stop signal task in combination with event-related potentials (ERPs) to examine participants’ neural activity supporting response inhibition. Results: Behaviorally, migraineurs exhibited prolonged stop signal reaction times relative to healthy controls. At the neural level, the amplitude of the stop-N2 over fronto-central, central and centro-parietal scalp regions, a component of the ERPs related to conflict monitoring during early, non-motoric stages of inhibition, was significantly increased in migraineurs. Meanwhile, the amplitude of the stop-P3 over central and centro-parietal scalp regions, a component of the ERPs reflecting late-stage inhibition of the motor system and cognitive evaluation of motor inhibition, was also significantly increased in migraineurs. Ultimately, our time-frequency analysis further revealed increased delta activity in migraineurs. Conclusions: Consistent with the theory that alterations in cognitive cortical processes are a key signature of migraine, our findings revealed an abnormal state of suppressing prepotent responses in migraineurs, which can be attributed to cortical disexcitability of the pre-frontal executive network and centro-parietal sensorimotor network. These novel findings extend to show the existence of dysfunctional inhibition control that occurs during suppression of prepotent responses in migraneurs.nctional inhibition control that occurs during suppression of prepotent responses in migraneurs.


2020 ◽  
Author(s):  
Guoliang Chen ◽  
Yansong Li ◽  
Dong Zhao ◽  
Rongfei Wang ◽  
Dengfa Zhao ◽  
...  

Abstract Background Migraine is characterized by a hypersensitivity to environmental stimulation which climaxes during headache attacks but persists during attack-free period. Despite ongoing debates about the nature of the mechanisms giving rise to this abnormality, the presence of deficient inhibitory cortical processes has been proposed to be one possible mechanism underlying its pathogenesis. Empirical evidence supporting this notion is mainly based on previous findings showing functional cortical hyperexcitability in the sensory domain. Considering that a general inhibitory control process can play an important role across early to later stage of information processing, this may in turn indicate the important role other dimensions of inhibitory control can play in migraine disability. To this end, the present study was designed to examine the pathophysiological basis of inhibitiory control that takes place during suppression of prepotent responses. Methods Twenty-two patients with migraine without aura (mean age = 30.86 ± 5.69 years; 19 females) during the interictal period and 25 healthy controls (mean age = 30.24 ± 3.52 years; 18 females) were recruited. We employed a stop signal task in combination with event-related potentials (ERPs) to examine participants’ neural activity supporting response inhibition. Results Behaviorally, migraineurs exhibited prolonged reaction times to the stop signal relative to healthy controls. At the neural level, the amplitude of the stop-N2, a component of the ERPs related to conflict monitoring during early, non-motoric stages of inhibition, was significantly increased in migraineurs. Meanwhile, the amplitude of the stop-P3, a component of the ERPs reflecting late-stage inhibition of the motor system itself and cognitive evaluation of motor inhibition, was also significantly increased in migraineurs. Moreover, our time-frequency analysis has further revealed increased delta activity in the time window used to extract the mean amplitude of the stop-P3 in migraineurs relative to healthy controls. Conclusions Consistent with the theory that cortical hyperexcitability is a key signature of migraine, these findings revealed a decrease in suppressing prepotent responses in migraineurs, which can be attributable to cortical hyperexcitability. These novel findings imply the existence of dysfunctional inhibitory control at later stage of information processing.


Author(s):  
Graciela C. Alatorre-Cruz ◽  
Heather Downs ◽  
Darcy Hagood ◽  
Seth T. Sorensen ◽  
D. Keith Williams ◽  
...  

Author(s):  
Lin Chi ◽  
Chiao-Ling Hung ◽  
Chi-Yen Lin ◽  
Tai-Fen Song ◽  
Chien-Heng Chu ◽  
...  

Obesity and cardiorespiratory fitness exhibit negative and positive impacts, respectively, on executive function. Nevertheless, the combined effects of these two factors on executive function remain unclear. This study investigated the combined effects of obesity and cardiorespiratory fitness on response inhibition of executive function from both behavioral and neuroelectric perspectives. Ninety-six young adults aged between 18 and 25 years were recruited and assigned into four groups: the high cardiorespiratory fitness with normal weight (NH), high cardiorespiratory fitness with obesity (OH), low cardiorespiratory fitness with normal weight (NL), and low cardiorespiratory fitness with obesity (OL) groups. The stop-signal task and its induced P3 component of event-related potentials was utilized to index response inhibition. The participants with higher cardiorespiratory fitness (i.e., the NH and OH groups) demonstrated better behavioral performance (i.e., shorter response times and higher accuracy levels), as well as shorter stop-signal response times and larger P3 amplitudes than their counterparts with low cardiorespiratory fitness (i.e., the NL and OL groups). The study provides first-hand evidence of the substantial effects of cardiorespiratory fitness on the response inhibition, including evidence that the detrimental effects of obesity might be overcome by high cardiorespiratory fitness.


Author(s):  
Elizabeth R Paitel ◽  
Kristy A Nielson

Aging is accompanied by frontal lobe and non-dominant hemisphere recruitment that supports executive functioning, such as inhibitory control, which is crucial to all cognitive functions. Yet, the spatio-temporal sequence of processing underlying successful inhibition and how it changes with age is understudied. Thus, we assessed N200 (conflict monitoring) and P300 (response inhibition, performance evaluation) event-related potentials (ERPs) in young and healthy older adults during comparably performed successful stop-signal inhibition. We additionally interrogated the continuous spatio-temporal dynamics of N200- and P300-related activation within each group. Young adults had left hemisphere dominant N200, while older adults had overall larger amplitudes and right hemisphere dominance. N200 activation was biphasic in both groups but differed in scalp topography. P300 also differed, with larger right amplitudes in young, but bilateral amplitudes in old, with old larger than young in the left hemisphere. P300 was characterized by an early parieto-occipital peak in both groups, followed by a parietal slow wave only in older adults. A temporally similar but topographically different final wave followed in both groups that showed anterior recruitment in older adults. These findings illuminate differential age-related spatio-temporal recruitment patterns for conflict monitoring and response inhibition that are critically important for understanding age-related compensatory activation.


2021 ◽  
Vol 15 ◽  
Author(s):  
Meng-Tien Hsieh ◽  
Hsinjie Lu ◽  
Chia-I Lin ◽  
Tzu-Han Sun ◽  
Yi-Ru Chen ◽  
...  

The present study aimed to use event-related potentials with the stop-signal task to investigate the effects of trait anxiety on inhibitory control, error monitoring, and post-error adjustments. The stop-signal reaction time (SSRT) was used to evaluate the behavioral competence of inhibitory control. Electrophysiological signals of error-related negativity (ERN) and error positivity (Pe) were used to study error perception and error awareness, respectively. Post-error slowing (PES) was applied to examine the behavioral adjustments after making errors. The results showed that SSRT and PES did not differ significantly between individuals with high trait anxiety (HTA) and those with low trait anxiety (LTA). However, individuals with HTA demonstrated reduced ERN amplitudes and prolonged Pe latencies than those with LTA. Prolonged Pe latencies were also significantly associated with poorer post-error adjustments. In conclusion, HTA led to reduced cortical responses to error monitoring. Furthermore, inefficient conscious awareness of errors might lead to maladaptive post-error adjustments.


2020 ◽  
pp. 1-14
Author(s):  
Michael K. Yeung ◽  
Ami Tsuchida ◽  
Lesley K. Fellows

The frontal lobes have long been implicated in inhibitory control, but a full understanding of the underlying mechanisms remains elusive. The stop-signal task has been widely used to probe instructed response inhibition in cognitive neuroscience. The processes involved have been modeled and related to putative brain substrates. However, there has been surprisingly little human lesion research using this task, with the few existing studies implicating different prefrontal regions. Here, we tested the effects of focal prefrontal damage on stop-signal task performance in a large sample of people with chronic focal damage affecting the frontal lobes ( n = 42) and demographically matched healthy people ( n = 60). Patients with damage to the left lateral, right lateral, dorsomedial, or ventromedial frontal lobe had slower stop-signal RT compared to healthy controls. There were systematic differences in the patterns of impairment across frontal subgroups: Those with damage to the left or right lateral and dorsomedial frontal lobes, but not those with ventromedial frontal damage, were slower than controls to “go” as well as to stop. These findings suggest that multiple prefrontal regions make necessary but distinct contributions to stop-signal task performance. As a consequence, stop-signal RT slowing is not strongly localizing within the frontal lobes.


Sign in / Sign up

Export Citation Format

Share Document