scholarly journals Effective Gamification of the Stop-Signal Task: Two Controlled Laboratory Experiments (Preprint)

2020 ◽  
Author(s):  
Maximilian Achim Friehs ◽  
Martin Dechant ◽  
Sarah Vedress ◽  
Christian Frings ◽  
Regan Lee Mandryk

BACKGROUND A lack of ability to inhibit prepotent responses, or more generally a lack of impulse control, is associated with several disorders such as attention-deficit/hyperactivity disorder and schizophrenia as well as general damage to the prefrontal cortex. A stop-signal task (SST) is a reliable and established measure of response inhibition. However, using the SST as an objective assessment in diagnostic or research-focused settings places significant stress on participants as the task itself requires concentration and cognitive effort and is not particularly engaging. This can lead to decreased motivation to follow task instructions and poor data quality, which can affect assessment efficacy and might increase drop-out rates. Gamification—the application of game-based elements in nongame settings—has shown to improve engaged attention to a cognitive task, thus increasing participant motivation and data quality. OBJECTIVE This study aims to design a gamified SST that improves participants’ engagement and validate this gamified SST against a standard SST. METHODS We described the design of our gamified SST and reported on 2 separate studies that aim to validate the gamified SST relative to a standard SST. In study 1, a within-subject design was used to compare the performance of the SST and a stop-signal game (SSG). In study 2, we added eye tracking to the procedure to determine if overt attention was affected and aimed to replicate the findings from study 1 in a between-subjects design. Furthermore, in both studies, flow and motivational experiences were measured. RESULTS In contrast, the behavioral performance was comparable between the tasks (<i>P</i>&lt;.87; BF01=2.87), and the experience of flow and intrinsic motivation were rated higher in the SSG group, although this difference was not significant. CONCLUSIONS Overall, our findings provide evidence that the gamification of SST is possible and that the SSG is enjoyed more. Thus, when participant engagement is critical, we recommend using the SSG instead of the SST.

10.2196/17810 ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. e17810 ◽  
Author(s):  
Maximilian Achim Friehs ◽  
Martin Dechant ◽  
Sarah Vedress ◽  
Christian Frings ◽  
Regan Lee Mandryk

Background A lack of ability to inhibit prepotent responses, or more generally a lack of impulse control, is associated with several disorders such as attention-deficit/hyperactivity disorder and schizophrenia as well as general damage to the prefrontal cortex. A stop-signal task (SST) is a reliable and established measure of response inhibition. However, using the SST as an objective assessment in diagnostic or research-focused settings places significant stress on participants as the task itself requires concentration and cognitive effort and is not particularly engaging. This can lead to decreased motivation to follow task instructions and poor data quality, which can affect assessment efficacy and might increase drop-out rates. Gamification—the application of game-based elements in nongame settings—has shown to improve engaged attention to a cognitive task, thus increasing participant motivation and data quality. Objective This study aims to design a gamified SST that improves participants’ engagement and validate this gamified SST against a standard SST. Methods We described the design of our gamified SST and reported on 2 separate studies that aim to validate the gamified SST relative to a standard SST. In study 1, a within-subject design was used to compare the performance of the SST and a stop-signal game (SSG). In study 2, we added eye tracking to the procedure to determine if overt attention was affected and aimed to replicate the findings from study 1 in a between-subjects design. Furthermore, in both studies, flow and motivational experiences were measured. Results In contrast, the behavioral performance was comparable between the tasks (P<.87; BF01=2.87), and the experience of flow and intrinsic motivation were rated higher in the SSG group, although this difference was not significant. Conclusions Overall, our findings provide evidence that the gamification of SST is possible and that the SSG is enjoyed more. Thus, when participant engagement is critical, we recommend using the SSG instead of the SST.


2017 ◽  
Author(s):  
Jim Alexander Lumsden ◽  
Andy Skinner ◽  
David Coyle ◽  
Natalia Lawrence ◽  
Marcus Robert Munafo

The prospect of assessing cognition longitudinally is attractive to researchers, health practitioners and pharmaceutical companies alike. However, such repeated-testing regimes place a considerable burden on participants, and with cognitive tasks typically being regarded as effortful and unengaging, these studies may experience high levels of participant attrition. One potential solution is to gamify these tasks to make them more engaging: increasing participant willingness to take part and reducing attrition. However, such an approach must balance task validity with introducing entertaining gamelike elements.We investigated the effects of gamelike features on participant attrition using a between-subjects, longitudinal online testing study. We used three variants of a common cognitive task, the stop signal task, with a single gamelike feature in each: one variant where points were rewarded for performing optimally, another where the task was given a graphical theme, and a third variant which was a standard stop signal task and served as a control condition. Participants completed four compulsory test sessions over four consecutive days before entering a six-day voluntary testing period where they faced a daily decision to either drop out or continue taking part. Participants were paid for each session they completed.We saw no evidence for an effect of gamification on attrition, with participants dropping out of each variant at equal rates. Our findings raise doubts about the ability of gamification to increase engagement with cognitive testing studies.


2019 ◽  
Vol 31 (4) ◽  
pp. 214-225 ◽  
Author(s):  
Niklas Johannes ◽  
Harm Veling ◽  
Thijs Verwijmeren ◽  
Moniek Buijzen

Abstract. Because more and more young people are constantly presented with the opportunity to access information and connect to others via their smartphones, they report to be in a state of permanent alertness. In the current study, we define such a state as smartphone vigilance, an awareness that one can always get connected to others in combination with a permanent readiness to respond to incoming smartphone notifications. We hypothesized that constantly resisting the urge to interact with their phones draws on response inhibition, and hence interferes with students’ ability to inhibit prepotent responses in a concurrent task. To test this, we conducted a preregistered experiment, employing a Bayesian sequential sampling design, where we manipulated smartphone visibility and smartphone notifications during a stop-signal task that measures the ability to inhibit prepotent responses. The task was constructed such that we could disentangle response inhibition from action selection. Results show that the mere visibility of a smartphone is sufficient to experience vigilance and distraction, and that this is enhanced when students receive notifications. Curiously enough, these strong experiences were unrelated to stop-signal task performance. These findings raise new questions about when and how smartphones can impact performance.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Monika Mühlböck ◽  
Nadia Steiber ◽  
Bernhard Kittel

AbstractAlthough online surveys are becoming more and more prominent, the quality of the resulting data is still contested. One potential caveat of web surveys is the absence of an interviewer who controls the interview situation, can motivate respondents and prevent them from satisficing, i.e. answering questions with minimal cognitive effort. While there is evidence for differences between data gathered in interviewer-administered surveys and data from self-administered questionnaires, it has not yet been studied whether the sheer presence of an interviewer affects data quality. The present article addresses this research gap. Based on a recent panel study of young unemployed adults, we compare the results from a completely self-administered web survey with those from interviews which were self-administered but conducted in the presence of an interviewer. In particular, we look for differences concerning drop-out, speed, item-non-response, and item-non-differentiation. While we do find significant differences in drop-out rates, we do not find any evidence for interviewer-absence leading to less diligence in filling in the questionnaire. We thus conclude that the presence of an interviewer does not enhance data quality for self-administered questionnaires, but positively affects completion rates.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Guoliang Chen ◽  
Yansong Li ◽  
Zhao Dong ◽  
Rongfei Wang ◽  
Dengfa Zhao ◽  
...  

Abstract Background Migraine is characterized by a hypersensitivity to environmental stimulation which climaxes during headache attacks but persists during attack-free period. Despite ongoing debates about the nature of the mechanisms giving rise to this abnormality, the presence of deficient inhibitory cortical processes has been proposed to be one possible mechanism underlying its pathogenesis. Empirical evidence supporting this claim is mainly based on previous accounts showing functional cortical disexcitability in the sensory domain. Considering that a general inhibitory control process can play an important role across early to later stage of information processing, this may indicate the important role other dimensions of inhibitory control can play in migraine disability. The present study examined the pathophysiological features of inhibitory control that takes place during suppression of prepotent responses in migraineurs. Methods Twenty-two patients with migraine without aura (mean age = 30.86 ± 5.69 years; 19 females) during the interictal period and 25 healthy controls (mean age = 30.24 ± 3.52 years; 18 females) were recruited. We used a stop signal task in combination with event-related potentials (ERPs) to examine participants’ neural activity supporting response inhibition. Results Behaviorally, migraineurs exhibited prolonged stop signal reaction times relative to healthy controls. At the neural level, the amplitude of the stop-N2 over fronto-central, central and centro-parietal scalp regions, a component of the ERPs related to conflict monitoring during early, non-motoric stages of inhibition, was significantly increased in migraineurs. Meanwhile, the amplitude of the stop-P3 over central and centro-parietal scalp regions, a component of the ERPs reflecting late-stage inhibition of the motor system and cognitive evaluation of motor inhibition, was also significantly increased in migraineurs. Ultimately, our time-frequency analysis further revealed increased delta activity in migraineurs. Conclusions Consistent with the theory that alterations in cognitive cortical processes are a key signature of migraine, our findings revealed an abnormal state of suppressing prepotent responses in migraineurs, which can be attributed to cortical disexcitability of the pre-frontal executive network and centro-parietal sensorimotor network. These novel findings extend to show the existence of dysfunctional inhibition control that occurs during suppression of prepotent responses in migraneurs.


2018 ◽  
Author(s):  
Niklas Johannes ◽  
Harm Veling ◽  
Thijs Verwijmeren ◽  
Moniek Buijzen

Because more and more young people are constantly presented with the opportunity to access information and connect to others via their smartphones, they report to be in a state of permanent alertness. In the current study, we define such a state as smartphone vigilance, an awareness that one can always get connected to others in combination with a permanent readiness to respond to incoming smartphone notifications. We hypothesized that constantly resisting the urge to interact with their phones draws on response inhibition, and hence interferes with students’ ability to inhibit prepotent responses in a concurrent task. To test this, we conducted a preregistered experiment, employing a Bayesian sequential sampling design, where we manipulated smartphone visibility and smartphone notifications during a stop-signal task that measures the ability to inhibit prepotent responses. The task was constructed such that we could disentangle response inhibition from action selection. Results show that the mere visibility of a smartphone is sufficient to experience vigilance and distraction, and that this is enhanced when students receive notifications. Curiously enough, these strong experiences were unrelated to stop-signal task performance. These findings raise new questions about when and how smartphones can impact performance.


2020 ◽  
Author(s):  
Guoliang Chen ◽  
Yansong Li ◽  
Zhao Dong ◽  
Rongfei Wang ◽  
Dengfa Zhao ◽  
...  

Abstract Background: Migraine is characterized by a hypersensitivity to environmental stimulation which climaxes during headache attacks but persists during attack-free period. Despite ongoing debates about the nature of the mechanisms giving rise to this abnormality, the presence of deficient inhibitory cortical processes has been proposed to be one possible mechanism underlying its pathogenesis. Empirical evidence supporting this claim is mainly based on previous accounts showing functional cortical disexcitability in the sensory domain. Considering that a general inhibitory control process can play an important role across early to later stage of information processing, this may indicate the important role other dimensions of inhibitory control can play in migraine disability. The present study examined the pathophysiological features of inhibitory control that takes place during suppression of prepotent responses in migraineurs.Methods: Twenty-two patients with migraine without aura (mean age = 30.86 ± 5.69 years; 19 females) during the interictal period and 25 healthy controls (mean age = 30.24 ± 3.52 years; 18 females) were recruited. We used a stop signal task in combination with event-related potentials (ERPs) to examine participants’ neural activity supporting response inhibition.Results: Behaviorally, migraineurs exhibited prolonged stop signal reaction times relative to healthy controls. At the neural level, the amplitude of the stop-N2 over fronto-central, central and centro-parietal scalp regions, a component of the ERPs related to conflict monitoring during early, non-motoric stages of inhibition, was significantly increased in migraineurs. Meanwhile, the amplitude of the stop-P3 over central and centro-parietal scalp regions, a component of the ERPs reflecting late-stage inhibition of the motor system and cognitive evaluation of motor inhibition, was also significantly increased in migraineurs. Ultimately, our time-frequency analysis further revealed increased delta activity in migraineurs.Conclusions: Consistent with the theory that alterations in cognitive cortical processes are a key signature of migraine, our findings revealed an abnormal state of suppressing prepotent responses in migraineurs, which can be attributed to cortical disexcitability of the pre-frontal executive network and centro-parietal sensorimotor network. These novel findings extend to show the existence of dysfunctional inhibition control that occurs during suppression of prepotent responses in migraneurs.


2020 ◽  
Author(s):  
Guoliang Chen ◽  
Yansong Li ◽  
Zhao Dong ◽  
Rongfei Wang ◽  
Dengfa Zhao ◽  
...  

Abstract Background: Migraine is characterized by a hypersensitivity to environmental stimulation which climaxes during headache attacks but persists during attack-free period. Despite ongoing debates about the nature of the mechanisms giving rise to this abnormality, the presence of deficient inhibitory cortical processes has been proposed to be one possible mechanism underlying its pathogenesis. Empirical evidence supporting this claim is mainly based on previous accounts showing functional cortical disexcitability in the sensory domain. Considering that a general inhibitory control process can play an important role across early to later stage of information processing, this may indicate the important role other dimensions of inhibitory control can play in migraine disability. The present study examined the pathophysiological features of inhibitory control that takes place during suppression of prepotent responses in migraineurs. Methods: Twenty-two patients with migraine without aura (mean age = 30.86 ± 5.69 years; 19 females) during the interictal period and 25 healthy controls (mean age = 30.24 ± 3.52 years; 18 females) were recruited. We used a stop signal task in combination with event-related potentials (ERPs) to examine participants’ neural activity supporting response inhibition. Results: Behaviorally, migraineurs exhibited prolonged stop signal reaction times relative to healthy controls. At the neural level, the amplitude of the stop-N2 over fronto-central, central and centro-parietal scalp regions, a component of the ERPs related to conflict monitoring during early, non-motoric stages of inhibition, was significantly increased in migraineurs. Meanwhile, the amplitude of the stop-P3 over central and centro-parietal scalp regions, a component of the ERPs reflecting late-stage inhibition of the motor system and cognitive evaluation of motor inhibition, was also significantly increased in migraineurs. Ultimately, our time-frequency analysis further revealed increased delta activity in migraineurs. Conclusions: Consistent with the theory that alterations in cognitive cortical processes are a key signature of migraine, our findings revealed an abnormal state of suppressing prepotent responses in migraineurs, which can be attributed to cortical disexcitability of the pre-frontal executive network and centro-parietal sensorimotor network. These novel findings extend to show the existence of dysfunctional inhibition control that occurs during suppression of prepotent responses in migraneurs.nctional inhibition control that occurs during suppression of prepotent responses in migraneurs.


2021 ◽  
Vol 11 (4) ◽  
pp. 461
Author(s):  
Francesca Morreale ◽  
Zinovia Kefalopoulou ◽  
Ludvic Zrinzo ◽  
Patricia Limousin ◽  
Eileen Joyce ◽  
...  

As part of the first randomized double-blind trial of deep brain stimulation (DBS) of the globus pallidus (GPi) in Tourette syndrome, we examined the effect of stimulation on response initiation and inhibition. A total of 14 patients with severe Tourette syndrome were recruited and tested on the stop signal task prior to and after GPi-DBS surgery and compared to eight age-matched healthy controls. Tics were significantly improved following GPi-DBS. The main measure of reactive inhibition, the stop signal reaction time did not change from before to after surgery and did not differ from that of healthy controls either before or after GPi-DBS surgery. This suggests that patients with Tourette syndrome have normal reactive inhibition which is not significantly altered by GPi-DBS.


Author(s):  
Martina Montalti ◽  
Marta Calbi ◽  
Valentina Cuccio ◽  
Maria Alessandra Umiltà ◽  
Vittorio Gallese

AbstractIn the last decades, the embodied approach to cognition and language gained momentum in the scientific debate, leading to evidence in different aspects of language processing. However, while the bodily grounding of concrete concepts seems to be relatively not controversial, abstract aspects, like the negation logical operator, are still today one of the main challenges for this research paradigm. In this framework, the present study has a twofold aim: (1) to assess whether mechanisms for motor inhibition underpin the processing of sentential negation, thus, providing evidence for a bodily grounding of this logic operator, (2) to determine whether the Stop-Signal Task, which has been used to investigate motor inhibition, could represent a good tool to explore this issue. Twenty-three participants were recruited in this experiment. Ten hand-action-related sentences, both in affirmative and negative polarity, were presented on a screen. Participants were instructed to respond as quickly and accurately as possible to the direction of the Go Stimulus (an arrow) and to withhold their response when they heard a sound following the arrow. This paradigm allows estimating the Stop Signal Reaction Time (SSRT), a covert reaction time underlying the inhibitory process. Our results show that the SSRT measured after reading negative sentences are longer than after reading affirmative ones, highlighting the recruitment of inhibitory mechanisms while processing negative sentences. Furthermore, our methodological considerations suggest that the Stop-Signal Task is a good paradigm to assess motor inhibition’s role in the processing of sentence negation.


Sign in / Sign up

Export Citation Format

Share Document