quadratically constrained quadratic programming
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 10)

H-INDEX

13
(FIVE YEARS 1)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 198
Author(s):  
Loay Alkhalifa ◽  
Hans Mittelmann

Techniques and methods of linear optimization underwent a significant improvement in the 20th century which led to the development of reliable mixed integer linear programming (MILP) solvers. It would be useful if these solvers could handle mixed integer nonlinear programming (MINLP) problems. Piecewise linear approximation (PLA) is one of most popular methods used to transform nonlinear problems into linear ones. This paper will introduce PLA with brief a background and literature review, followed by describing our contribution before presenting the results of computational experiments and our findings. The goals of this paper are (a) improving PLA models by using nonuniform domain partitioning, and (b) proposing an idea of applying PLA partially on MINLP problems, making them easier to handle. The computational experiments were done using quadratically constrained quadratic programming (QCQP) and MIQCQP and they showed that problems under PLA with nonuniform partition resulted in more accurate solutions and required less time compared to PLA with uniform partition.


Author(s):  
Ran Gu ◽  
Qiang Du ◽  
Ya-xiang Yuan

Abstract Quadratically constrained quadratic programming (QCQP) appears widely in engineering applications such as wireless communications and networking and multiuser detection with examples like the MAXCUT problem and boolean optimization. A general QCQP problem is NP-hard. We propose a penalty formulation for the QCQP problem based on semidefinite relaxation. Under suitable assumptions we show that the optimal solutions of the penalty problem are the same as those of the original QCQP problem if the penalty parameter is sufficiently large. Then, to solve the penalty problem, we present a proximal point algorithm and an update rule for the penalty parameter. Numerically, we test our algorithm on two well-studied QCQP problems. The results show that our proposed algorithm is very effective in finding high-quality solutions.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3310 ◽  
Author(s):  
Luis M. Leon ◽  
Arturo S. Bretas ◽  
Sergio Rivera

Contingency Constrained Optimal Power Flow (CCOPF) differs from traditional Optimal Power Flow (OPF) because its generation dispatch is planned to work with state variables between constraint limits, considering a specific contingency. When it is not desired to have changes in the power dispatch after the contingency occurs, the CCOPF is studied with a preventive perspective, whereas when the contingency occurs and the power dispatch needs to change to operate the system between limits in the post-contingency state, the problem is studied with a corrective perspective. As current power system software tools mainly focus on the traditional OPF problem, having the means to solve CCOPF will benefit power systems planning and operation. This paper presents a Quadratically Constrained Quadratic Programming (QCQP) formulation built within the matpower environment as a solution strategy to the preventive CCOPF. Moreover, an extended OPF model that forces the network to meet all constraints under contingency is proposed as a strategy to find the power dispatch solution for the corrective CCOPF. Validation is made on the IEEE 14-bus test system including photovoltaic generation in one simulation case. It was found that in the QCQP formulation, the power dispatch calculated barely differs in both pre- and post-contingency scenarios while in the OPF extended power network, node voltage values in both pre- and post-contingency scenarios are equal in spite of having different power dispatch for each scenario. This suggests that both the QCQP and the extended OPF formulations proposed, could be implemented in power system software tools in order to solve CCOPF problems from a preventive or corrective perspective.


Sign in / Sign up

Export Citation Format

Share Document