scholarly journals Quadratically Constrained Quadratic Programming Formulation of Contingency Constrained Optimal Power Flow with Photovoltaic Generation

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3310 ◽  
Author(s):  
Luis M. Leon ◽  
Arturo S. Bretas ◽  
Sergio Rivera

Contingency Constrained Optimal Power Flow (CCOPF) differs from traditional Optimal Power Flow (OPF) because its generation dispatch is planned to work with state variables between constraint limits, considering a specific contingency. When it is not desired to have changes in the power dispatch after the contingency occurs, the CCOPF is studied with a preventive perspective, whereas when the contingency occurs and the power dispatch needs to change to operate the system between limits in the post-contingency state, the problem is studied with a corrective perspective. As current power system software tools mainly focus on the traditional OPF problem, having the means to solve CCOPF will benefit power systems planning and operation. This paper presents a Quadratically Constrained Quadratic Programming (QCQP) formulation built within the matpower environment as a solution strategy to the preventive CCOPF. Moreover, an extended OPF model that forces the network to meet all constraints under contingency is proposed as a strategy to find the power dispatch solution for the corrective CCOPF. Validation is made on the IEEE 14-bus test system including photovoltaic generation in one simulation case. It was found that in the QCQP formulation, the power dispatch calculated barely differs in both pre- and post-contingency scenarios while in the OPF extended power network, node voltage values in both pre- and post-contingency scenarios are equal in spite of having different power dispatch for each scenario. This suggests that both the QCQP and the extended OPF formulations proposed, could be implemented in power system software tools in order to solve CCOPF problems from a preventive or corrective perspective.

Author(s):  
Oludamilare Bode Adewuyi ◽  
Harun Or Rashid Howlader ◽  
Isaiah Opeyemi Olaniyi ◽  
David Abdul Konneh ◽  
Tomonobu Senjyu

2012 ◽  
Vol 590 ◽  
pp. 195-200
Author(s):  
Meng Jen Chen ◽  
Yu Chi Wu ◽  
Wen Shiush Chen ◽  
Pei Wei Huang ◽  
Tsung Wei Tsai

In this paper, a framework for integrating a real-time digital simulator and EMS-OPF program is proposed and addressed, through two different communication architectures: asynchronous and synchronous. Validation of these communication architectures is carried out by Ethernet UDP/IP (asynchronous) and analog channels of IO card (synchronous). With this framework, both dynamic and steady-state performance of a power system can be studied easily in real-time mode.


Energy ◽  
2014 ◽  
Vol 68 ◽  
pp. 140-147 ◽  
Author(s):  
Hadi Norouzi ◽  
Sajjad Abedi ◽  
Reza Jamalzadeh ◽  
Milad Ghiasi Rad ◽  
Seyed Hossein Hosseinian

Author(s):  
Kshitij Choudhary ◽  
Rahul Kumar ◽  
Dheeresh Upadhyay ◽  
Brijesh Singh

The present work deals with the economic rescheduling of the generation in an hour-ahead electricity market. The schedules of various generators in a power system have been optimizing according to active power demand bids by various load buses. In this work, various aspects of power system such as congestion management, voltage stabilization and loss minimization have also taken into consideration for the achievement of the goal. The interior point (IP) based optimal power flow (OPF) methodology has been used to obtain the optimal generation schedule for economic system operation. The IP based OPF methodology has been tested on a modified IEEE-30 bus system. The obtained test results shows that not only the generation cost is reduced also the performance of power system has been improved using proposed methodology.


Sign in / Sign up

Export Citation Format

Share Document