american crow
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 9)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
LomaJohn T. Pendergraft ◽  
John M. Marzluff ◽  
Donna J. Cross ◽  
Toru Shimizu ◽  
Christopher N. Templeton

Social interaction among animals can occur under many contexts, such as during foraging. Our knowledge of the regions within an avian brain associated with social interaction is limited to the regions activated by a single context or sensory modality. We used 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) to examine American crow (Corvus brachyrhynchos) brain activity in response to conditions associated with communal feeding. Using a paired approach, we exposed crows to either a visual stimulus (the sight of food), an audio stimulus (the sound of conspecifics vocalizing while foraging) or both audio/visual stimuli presented simultaneously and compared to their brain activity in response to a control stimulus (an empty stage). We found two regions, the nucleus taenia of the amygdala (TnA) and a medial portion of the caudal nidopallium, that showed increased activity in response to the multimodal combination of stimuli but not in response to either stimulus when presented unimodally. We also found significantly increased activity in the lateral septum and medially within the nidopallium in response to both the audio-only and the combined audio/visual stimuli. We did not find any differences in activation in response to the visual stimulus by itself. We discuss how these regions may be involved in the processing of multimodal stimuli in the context of social interaction.


2021 ◽  
Author(s):  
N. A. Verbeek ◽  
Carolee Caffrey

2020 ◽  
Vol 385 ◽  
pp. 112546 ◽  
Author(s):  
Kaeli N. Swift ◽  
John M. Marzluff ◽  
Christopher N. Templeton ◽  
Toru Shimizu ◽  
Donna J. Cross
Keyword(s):  

2020 ◽  
Author(s):  
N. A. Verbeek ◽  
C. Caffrey

The Auk ◽  
2019 ◽  
Vol 137 (1) ◽  
Author(s):  
Ken Yasukawa ◽  
Jessica Sollenberger ◽  
Josie Lindsey-Robbins ◽  
Elizabeth DeBruyn

Abstract Nest predation is the most frequent cause of nest failure in birds such as the Red-winged Blackbird (Agelaius phoeniceus) that nest on or near the substrate. Nestlings should therefore exhibit adaptations to reduce the risk of nest predation. We tested the nestling antipredator hypothesis by examining the begging responses of Red-winged Blackbird nestlings to vocalizations of (1) an important nest predator (American Crow, Corvus brachyrhynchos), (2) a predator that rarely preys on nestlings (Cooper’s Hawk, Accipiter cooperii), and (3) a nonpredator (Northern Flicker, Colaptes auratus). We performed playbacks with (1) both parents present at the nest, (2) male at the nest, and (3) neither parent present. Following playback, we measured duration of nestling begging after the parent departed (begging persistence), bouts of otherwise normal begging when no parent was present (parent-absent begging), and calling without postural components of begging (nonpostural begging). When the male or both parents were present during playback, adults responded with alarm calls and nestlings significantly reduced parent-absent begging following American Crow and Cooper’s Hawk playbacks. Nonpostural begging was significantly reduced following Cooper’s Hawk playback, but there were no significant differences in the other begging variables. When neither parent was present, we found no significant differences in nonpostural begging in response to the 3 playback types, but parent-absent begging was significantly reduced following American Crow and Cooper’s Hawk playbacks when compared to Northern Flicker playbacks. These results show that nestlings suppress their vocal begging in response to calls of predators including Cooper’s Hawks even though they are not common nest predators.


2019 ◽  
Vol 28 (5) ◽  
pp. 1116-1126 ◽  
Author(s):  
Andrea K. Townsend ◽  
Conor C. Taff ◽  
Melissa L. Jones ◽  
Katherine H. Getman ◽  
Sarah S. Wheeler ◽  
...  

2018 ◽  
Vol 373 (1754) ◽  
pp. 20170259 ◽  
Author(s):  
Kaeli Swift ◽  
John M. Marzluff

Observations of some mammals and birds touching their dead provoke questions about the motivation and adaptive value of this potentially risky behaviour. Here, we use controlled experiments to determine if tactile interactions are characteristic of wild American crow responses to dead crows, and what the prevalence and nature of tactile interactions suggests about their motivations. In Experiment 1, we test if food or information acquisition motivates contact by presenting crows with taxidermy-prepared dead crows, and two species crows are known to scavenge: dead pigeons and dead squirrels. In Experiment 2, we test if territoriality motivates tactile interactions by presenting crows with taxidermy crows prepared to look either dead or upright and life-like. In Experiment 1, we find that crows are significantly less likely to make contact but more likely to alarm call and recruit other birds in response to dead crows than to dead pigeons and squirrels. In addition, we find that aggressive and sexual encounters with dead crows are seasonally biased. These findings are inconsistent with feeding or information acquisition-based motivation. In Experiment 2, we find that crows rarely dive-bomb and more often alarm call and recruit other crows to dead than to life-like crows, behaviours inconsistent with responses given to live intruders. Consistent with a danger response hypothesis, our results show that alarm calling and neighbour recruitment occur more frequently in response to dead crows than other stimuli, and that touching dead crows is atypical. Occasional contacts, which take a variety of aggressive and sexual forms, may result from an inability to mediate conflicting stimuli. This article is part of the theme issue ‘Evolutionary thanatology: impacts of the dead on the living in humans and other animals’.


Sign in / Sign up

Export Citation Format

Share Document