stochastic galerkin method
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 14)

H-INDEX

11
(FIVE YEARS 1)

2019 ◽  
Vol 5 (1) ◽  
pp. 65-106 ◽  
Author(s):  
A. Chertock ◽  
A. Kurganov ◽  
M. Lukáčová-Medvid’ová ◽  
P. Spichtinger ◽  
B. Wiebe

AbstractWe develop a stochastic Galerkin method for a coupled Navier-Stokes-cloud system that models dynamics of warm clouds. Our goal is to explicitly describe the evolution of uncertainties that arise due to unknown input data, such as model parameters and initial or boundary conditions. The developed stochastic Galerkin method combines the space-time approximation obtained by a suitable finite volume method with a spectral-type approximation based on the generalized polynomial chaos expansion in the stochastic space. The resulting numerical scheme yields a second-order accurate approximation in both space and time and exponential convergence in the stochastic space. Our numerical results demonstrate the reliability and robustness of the stochastic Galerkin method. We also use the proposed method to study the behavior of clouds in certain perturbed scenarios, for examples, the ones leading to changes in macroscopic cloud pattern as a shift from hexagonal to rectangular structures.


2019 ◽  
Vol 59 ◽  
pp. C301-C317
Author(s):  
David Brendan Harman ◽  
Peter R Johnston

The ability to accurately predict the course of an epidemic is extremely important. This article looks at an influenza outbreak that spread through a small boarding school. Predictions are made on multiple days throughout the epidemic using the stochastic Galerkin method to consider a range of plausible values for the parameters. These predictions are then compared to known data points. Predictions made before the peak of the epidemic had much larger variances compared to predictions made after the peak of the epidemic. References B. M. Chen-Charpentier, J. C. Cortes, J. V. Romero, and M. D. Rosello. Some recommendations for applying gPC (generalized polynomial chaos) to modeling: An analysis through the Airy random differential equation. Applied Mathematics and Computation, 219(9):4208 4218, 2013. doi:10.1016/j.amc.2012.11.007 B. M. Chen-Charpentier and D. Stanescu. Epidemic models with random coefficients. Mathematical and Computer Modelling, 52:1004 1010, 2010. doi:10.1016/j.mcm.2010.01.014 D. B. Harman and P. R. Johnston. Applying the stochastic galerkin method to epidemic models with individualised parameter distributions. In Proceedings of the 12th Biennial Engineering Mathematics and Applications Conference, EMAC-2015, volume 57 of ANZIAM J., pages C160C176, August 2016. doi:10.21914/anziamj.v57i0.10394 D. B. Harman and P. R. Johnston. Applying the stochastic galerkin method to epidemic models with uncertainty in the parameters. Mathematical Biosciences, 277:25 37, 2016. doi:10.1016/j.mbs.2016.03.012 D. B. Harman and P. R. Johnston. Boarding house: find border. 2019. doi:10.6084/m9.figshare.7699844.v1 D. B. Harman and P. R. Johnston. SIR uniform equations. 2 2019. doi:10.6084/m9.figshare.7692392.v1 H. W. Hethcote. The mathematics of infectious diseases. SIAM Review, 42(4):599653, 2000. doi:10.1137/S0036144500371907 R.I. Hickson and M.G. Roberts. How population heterogeneity in susceptibility and infectivity influences epidemic dynamics. Journal of Theoretical Biology, 350(0):70 80, 2014. doi:10.1016/j.jtbi.2014.01.014 W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, 115(772):700721, August 1927. doi:10.1098/rspa.1927.0118 M. G. Roberts. A two-strain epidemic model with uncertainty in the interaction. The ANZIAM Journal, 54:108115, 10 2012. doi:10.1017/S1446181112000326 M. G. Roberts. Epidemic models with uncertainty in the reproduction number. Journal of Mathematical Biology, 66(7):14631474, 2013. doi:10.1007/s00285-012-0540-y F. Santonja and B. Chen-Charpentier. Uncertainty quantification in simulations of epidemics using polynomial chaos. Computational and Mathematical Methods in Medicine, 2012:742086, 2012. doi:10.1155/2012/742086 Communicable Disease Surveillance Centre (Public Health Laboratory Service) and Communicable Diseases (Scotland) Unit. Influenza in a boarding school. BMJ, 1(6112):587, 1978. doi:10.1136/bmj.1.6112.586 G. Strang. Linear Algebra and Its Applications. Thomson, Brooks/Cole, 2006. D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, 2010.


Sign in / Sign up

Export Citation Format

Share Document