natural genetic transformation
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 10)

H-INDEX

24
(FIVE YEARS 1)

Author(s):  
Vitor Oliveira ◽  
Marie-Stephanie Aschtgen ◽  
Anke van Erp ◽  
Birgitta Henriques-Normark ◽  
Sandra Muschiol

The remarkable genomic plasticity of Streptococcus pneumoniae largely depends on its ability to undergo natural genetic transformation. To take up extracellular DNA, S. pneumoniae assembles competence pili composed of the major pilin ComGC. In addition to ComGC, four minor pilins ComGD, E, F, and G are expressed during bacterial competence, but their role in pilus biogenesis and transformation is unknown. Here, using a combination of protein-protein interaction assays we show that all four proteins can directly interact with each other. Pneumococcal ComGG stabilizes the minor pilin ComGD and ComGF and can interact with and stabilize the major pilin ComGC, thus, deletion of ComGG abolishes competence pilus assembly. We further demonstrate that minor pilins are present in sheared pili fractions and find ComGF to be incorporated along the competence pilus by immunofluorescence and electron microscopy. Finally, mutants of the invariant Glu5 residue (E5), ComGDE5A or ComGEE5A, but not ComGFE5A, were severely impaired in pilus formation and function. Together, our results suggest that ComGG, lacking E5, is essential for competence pilus assembly and function, and plays a central role in connecting the pneumococcal minor pilins to ComGC.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Yinchu Zhu ◽  
Jiale Ma ◽  
Yue Zhang ◽  
Xiaojun Zhong ◽  
Qiankun Bai ◽  
...  

AbstractStreptococcussuis (S.suis) is an important zoonotic pathogen that causes septicaemia, meningitis and streptococcal toxic shock-like syndrome in its host, and recent studies have shown that S.suis could be competent for natural genetic transformation. Transformation is an important mechanism for the horizontal transfer of DNA, but some elements that affect the transformation process need to be further explored. Upon entering the competent state, Streptococcus species stimulate the transcription of competence-related genes that are responsible for exogenous DNA binding, uptake and processing. In this study, we performed conserved promoter motif and qRT-PCR analyses and identified CrfP as a novel murein hydrolase that is widespread in S.suis and stimulated with a peptide pheromone in the competent state through a process controlled by ComX. A bioinformatics analysis revealed that CrfP consists of a CHAP hydrolase domain and two bacterial Src homology 3-binding (SH3b) domains. Further characterization showed that CrfP could be exported to extracellular bacterial cells and lytic S.suis strains of different serotypes, and this finding was verified by TEM and a turbidity assay. To investigate the potential effect of CrfP in vivo, a gene-deletion mutant (ΔcrfP) was constructed. Instead of stopping the natural transformation process, the inactivation of CrfP clearly reduced the effective transformation rate. Overall, these findings provide evidence showing that CrfP is important for S.suis serovar 2 competence.


Genes ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 675
Author(s):  
Isabelle Mortier-Barrière ◽  
Patrice Polard ◽  
Nathalie Campo

Natural genetic transformation is a programmed mechanism of horizontal gene transfer in bacteria. It requires the development of competence, a specialized physiological state during which proteins involved in DNA uptake and chromosomal integration are produced. In Streptococcus pneumoniae, competence is transient. It is controlled by a secreted peptide pheromone, the competence-stimulating peptide (CSP) that triggers the sequential transcription of two sets of genes termed early and late competence genes, respectively. Here, we used a microfluidic system with fluorescence microscopy to monitor pneumococcal competence development and transformation, in live cells at the single cell level. We present the conditions to grow this microaerophilic bacterium under continuous flow, with a similar doubling time as in batch liquid culture. We show that perfusion of CSP in the microfluidic chamber results in the same reduction of the growth rate of individual cells as observed in competent pneumococcal cultures. We also describe newly designed fluorescent reporters to distinguish the expression of competence genes with temporally distinct expression profiles. Finally, we exploit the microfluidic technology to inject both CSP and transforming DNA in the microfluidic channels and perform near real time-tracking of transformation in live cells. We show that this approach is well suited to investigating the onset of pneumococcal competence together with the appearance and the fate of transformants in individual cells.


2019 ◽  
Vol 137 (1) ◽  
pp. 33-40
Author(s):  
GdJ Carrillo-Méndez ◽  
LA Zermeño-Cervantes ◽  
AA Venancio-Landeros ◽  
SFM Díaz ◽  
CS Cardona-Félix

Sign in / Sign up

Export Citation Format

Share Document