pelobacter acetylenicus
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

2017 ◽  
Vol 13 ◽  
pp. 2332-2339 ◽  
Author(s):  
Matthias Schreyer ◽  
Lukas Hintermann

The tungsten(IV) complex (Et4N)2[W(O)(mnt)2] (1; mnt = maleonitriledithiolate) was proposed (Sarkar et al., J. Am. Chem. Soc. 1997, 119, 4315) to be a functional analogue of the active center of the enzyme acetylene hydratase from Pelobacter acetylenicus, which hydrates acetylene (ethyne; 2) to acetaldehyde (ethanal; 3). In the absence of a satisfactory mechanistic proposal for the hydration reaction, we considered the possibility of a metal–vinylidene type activation mode, as it is well established for ruthenium-based alkyne hydration catalysts with anti-Markovnikov regioselectivity. To validate the hypothesis, the regioselectivity of tungsten-catalyzed alkyne hydration of a terminal, higher alkyne had to be determined. However, complex 1 was not a competent catalyst for the hydration of 1-octyne under the conditions tested. Furthermore, we could not observe the earlier reported hydration activity of complex 1 towards acetylene. A critical assessment of, and a possible explanation for the earlier reported results are offered. The title question is answered with "no".


2017 ◽  
Vol 83 (17) ◽  
Author(s):  
Denise M. Akob ◽  
Shaun M. Baesman ◽  
John M. Sutton ◽  
Janna L. Fierst ◽  
Adam C. Mumford ◽  
...  

ABSTRACT Acetylene (C2H2) is a trace constituent of the present Earth's oxidizing atmosphere, reflecting a mixture of terrestrial and marine emissions from anthropogenic, biomass-burning, and unidentified biogenic sources. Fermentation of acetylene was serendipitously discovered during C2H2 block assays of N2O reductase, and Pelobacter acetylenicus was shown to grow on C2H2 via acetylene hydratase (AH). AH is a W-containing, catabolic, low-redox-potential enzyme that, unlike nitrogenase (N2ase), is specific for acetylene. Acetylene fermentation is a rare metabolic process that is well characterized only in P. acetylenicus DSM3246 and DSM3247 and Pelobacter sp. strain SFB93. To better understand the genetic controls for AH activity, we sequenced the genomes of the three acetylene-fermenting Pelobacter strains. Genome assembly and annotation produced three novel genomes containing gene sequences for AH, with two copies being present in SFB93. In addition, gene sequences for all five compulsory genes for iron-molybdenum N2ase were also present in the three genomes, indicating the cooccurrence of two acetylene transformation pathways. Nitrogen fixation growth assays showed that DSM3426 could ferment acetylene in the absence of ammonium, but no ethylene was produced. However, SFB93 degraded acetylene and, in the absence of ammonium, produced ethylene, indicating an active N2ase. Diazotrophic growth was observed under N2 but not in experimental controls incubated under argon. SFB93 exhibits acetylene fermentation and nitrogen fixation, the only known biochemical mechanisms for acetylene transformation. Our results indicate complex interactions between N2ase and AH and suggest novel evolutionary pathways for these relic enzymes from early Earth to modern days. IMPORTANCE Here we show that a single Pelobacter strain can grow via acetylene fermentation and carry out nitrogen fixation, using the only two enzymes known to transform acetylene. These findings provide new insights into acetylene transformations and adaptations for nutrient (C and N) and energy acquisition by microorganisms. Enhanced understanding of acetylene transformations (i.e., extent, occurrence, and rates) in modern environments is important for the use of acetylene as a potential biomarker for extraterrestrial life and for degradation of anthropogenic contaminants.


2017 ◽  
Vol 5 (6) ◽  
Author(s):  
John M. Sutton ◽  
Shaun M. Baesman ◽  
Janna L. Fierst ◽  
Amisha T. Poret-Peterson ◽  
Ronald S. Oremland ◽  
...  

ABSTRACT Acetylene fermentation is a rare metabolism that was serendipitously discovered during C2H2-block assays of N2O reductase. Here, we report the genome sequences of two type strains of acetylene-fermenting Pelobacter acetylenicus, the freshwater bacterium DSM 3246 and the estuarine bacterium DSM 3247.


2017 ◽  
Vol 5 (6) ◽  
Author(s):  
John M. Sutton ◽  
Shaun M. Baesman ◽  
Janna L. Fierst ◽  
Amisha T. Poret-Peterson ◽  
Ronald S. Oremland ◽  
...  

ABSTRACT Acetylene fermentation is a rare metabolism that was previously reported as being unique to Pelobacter acetylenicus. Here, we report the genome sequence of Pelobacter sp. strain SFB93, an acetylene-fermenting bacterium isolated from sediments collected in San Francisco Bay, CA.


2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Sarah Wigley ◽  
George M Garrity

1999 ◽  
Vol 264 (1) ◽  
pp. 176-182 ◽  
Author(s):  
Rainer U. Meckenstock ◽  
Robert Krieger ◽  
Scott Ensign ◽  
Peter M. H. Kroneck ◽  
Bernhard Schink

1993 ◽  
Vol 16 (2) ◽  
pp. 216-218 ◽  
Author(s):  
Stefan Evers ◽  
Michael Weizenegger ◽  
Wolfgang Ludwig ◽  
Bernhard Schink ◽  
Karl-Heinz Schleifer

1990 ◽  
Vol 71 (1-2) ◽  
pp. 83-87 ◽  
Author(s):  
H.-J. Seitz ◽  
F. Siñeriz ◽  
B. Schink ◽  
R. Conrad

Sign in / Sign up

Export Citation Format

Share Document