global branch
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

2012 ◽  
Vol 2012 ◽  
pp. 1-18
Author(s):  
Houda Mokrani ◽  
Fatimetou Mint Aghrabatt

We discuss the asymptotic behavior of solutions for semilinear parabolic equations on the Heisenberg group with a singular potential. The singularity is controlled by Hardy's inequality, and the nonlinearity is controlled by Sobolev's inequality. We also establish the existence of a global branch of the corresponding steady states via the classical Rabinowitz theorem.


2006 ◽  
Vol 92 (3) ◽  
pp. 655-681 ◽  
Author(s):  
C. A. STUART ◽  
HUAN-SONG ZHOU

We consider the stationary non-linear Schrödinger equation\begin{equation*}\Delta u + \{1 + \lambda g(x)\} u = f(u)\mbox{with}u \in H^{1} (\mathbb{R}^{N}), u \not\equiv 0,\end{equation*} where $\lambda >0$ and the functions $f$ and $g$ are such that\begin{equation*} \lim_{s \rightarrow 0}\frac{f(s)}{s} = 0 \mbox{and} 1 < \alpha + 1 = \lim _{|s| \rightarrow \infty}\frac{f(s)}{s} < \infty\end{equation*} and \begin{equation*} g(x)\equiv 0 \mbox{on} \bar{\Omega}, g(x)\in (0, 1] \mbox{on} {\mathbb{R}^{N}} \setminus {\overline{\Omega}} \mbox{and} \lim_{|x| \rightarrow + \infty} g(x) = 1 \end{equation*} for some bounded open set $\Omega \in \mathbb{R}^{N}$. We use topological methods to establish the existence of two connected sets $\mathcal{D}^{\pm}$ of positive/negative solutions in $\mathbb{R} \times W^{2, p} (\mathbb{R}^{N})$ where $p \in [2, \infty) \cap (\frac{N}{2},\infty)$ that cover the interval $(\alpha,\Lambda(\alpha))$ in the sense that \begin{align*} P \mathcal{D}^{\pm} & = (\alpha, \Lambda(\alpha)) \text{where}P(\lambda, u) = \lambda \text{and furthermore,} \\ \lim_{\lambda \rightarrow \Lambda(\alpha)-}\left\Vert u_{\lambda} \right\Vert _{L^{\infty} (\mathbb{R}^{N})} & = \lim_{\lambda \rightarrow \Lambda (\alpha )-} \left\Vert u_{\lambda} \right\Vert _{W^{2, p}(\mathbb{R}^{N})} = \infty \text{ for }(\lambda, u_{\lambda}) \in \mathcal{D}^{\pm}. \end{align*} The number $\Lambda(\alpha)$ is characterized as the unique value of $\lambda$ in the interval $(\alpha, \infty)$ for which the asymptotic linearization has a positive eigenfunction. Our work uses a degree for Fredholm maps of index zero.


2003 ◽  
Vol 13 (11) ◽  
pp. 3519-3530
Author(s):  
DAVID C. DIMINNIE ◽  
RICHARD HABERMAN

At a saddle-center bifurcation for Hamiltonian systems, the homoclinic orbit is cusp shaped at the nonlinear nonhyperbolic saddle point. Near but before the bifurcation, orbits are periodic corresponding to the unfolding of the homoclinic orbit, while after the bifurcation a double homoclinic orbit is formed with a local and global branch. The saddle-center bifurcation is dynamically unfolded due to a slowly varying potential. Near the unfolding of the homoclinic orbit, the period and action are analyzed. Asymptotic expansions for the action, period and dissipation are obtained in an overlap region near the homoclinic orbit of the saddle-center bifurcation. In addition, the unfoldings of the action and dissipation functions associated with zero energy orbits (periodic and homoclinic) near the saddle-center bifurcation are determined using the method of matched asymptotic expansions for integrals.


Sign in / Sign up

Export Citation Format

Share Document