valley flank
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 48 (5) ◽  
Author(s):  
Valeria Zavala ◽  
Sébastien Carretier ◽  
Vincent Regard ◽  
Stéphane Bonnet ◽  
Rodrigo Riquelme ◽  
...  

2020 ◽  
Author(s):  
Valeria Zavala ◽  
Sebastien Carretier ◽  
Vincent Regard ◽  
Stephane Bonnet ◽  
Rodrigo Riquelme ◽  
...  

<p>The downstream increase in valley width is an important feature of fluvial landscapes that may be evident to anyone: even if local exceptions exist, wide fluvial valleys in plains are distinctive of narrow upstream mountainous ones. Yet, the processes and rates governing along-stream valley widening over timescales characteristic of landscape development (>1-10 ka) are largely unknown. No suitable law exists in landscape evolution models, thus models imperfectly reproduce the landscape evolution at geological timescales, their rates of erosion and probably their response to tectonics and climate. Here, we study two 1 km-deep canyons in northern Chile with diachronous incision initiation, thus representing two time-stage evolutions of a similar geomorphic system characterized by valley widening following the upward migration of a major knickzone. We use 10Be cosmogenic isotope concentrations measured in colluvial deposits at the foot of hillslopes to quantify along-stream valley flank erosion rates. We observe that valley flank erosion rate increases quasi-linearly with valley-bed slope and decreases non-linearly with valley width. This relation suggests that lateral erosion increases with sediment flux due to higher channel mobility. In turn, valley width exerts a negative feedback on lateral valley flank erosion since channels in wide valleys have a lower probability of eroding the valley sides. This implies a major control of river divagation on valley flank erosion rate and valley widening. Our study provides the first data for understanding the long-term processes and rates governing valley widening in landscapes.</p>


2020 ◽  
Author(s):  
Diethard Sanders ◽  
Bastian Joachim-Mrosko ◽  
Jürgen Konzett ◽  
Julian Lanthaler ◽  
Marc Ostermann ◽  
...  

<p>The P-T conditions in extremely-rapid gravity-driven rockslides are difficult to constrain from the descended rock mass itself. Here, we report mineralogical observations from the Koefels rockslide and their interpretation. The Koefels event – happened between 9527-9498 cal BP – comprises 3.9 km<sup>3</sup> mainly of muscovite + biotite-bearing orthogneiss, and is one of the few large rockslides in silicate-bearing rocks worldwide. Detached by collapse of a valley flank, the rockslide impacted the opposite valley flank: While the lower part of the mass was sharply stopped, the overriding part propagated farther. This led to shear localization along discrete planes and, in consequence, to transient melting by frictional heating. The resulting frictionites comprise thin glassy levels with floating crystal fragments. The bulk composition of the glassy melt corresponds to the composition of the orthogneiss.</p><p>            In the frictionites, ultra-high pressure metamorphosed quartz (UPQ) occurs next to unaffected quartz in a glassy matrix. Micro-Raman spectroscopy of unaffected quartz yielded an intense A1 Raman mode at 464 cm<sup>-1 </sup>; UPQ shows a shift of this band down to 460cm<sup>-1</sup>, with some grains showing an internal gradient of up to 3 cm<sup>-1</sup> from the core (463cm<sup>-1</sup>) to the rim (460 cm<sup>-1</sup>). Some UPQ are rimmed by lechatelierite (SiO<sub>2</sub> glass), which never surrounds unaffected quartz grains. Until now lechatelierite formation in frictionites was considered to be a function of temperature only (Heuberger et al. 1984). Because lechatelierite only rims UPQ with outward decreasing band numbers, we interpret lechatelierite formation to be mainly pressure-driven. The completely molten matrix and the lack of glassy rims at the edges of normal quartz indicates minimum temperatures of 900°C. Experimental investigations have shown that the shifted A1 mode of UPQ equilibrates to 464 cm<sup>-1</sup> at 1100°C, thus giving an upper limit of the temperature range. The Raman shift of the A1 mode and the presence of lechatelierite strongly suggest that a pressure >23 GPa was attained (cf., McMillan et al. 1991, Fritz et al. 2011, Kowitz et al. 2013).</p><p>            The UPQ and lechatelierite rims formed by grain collisions during initial shear localization, when the shear plane was relatively cool. Next, upon rapid frictional heating the glassy frictionite matrix formed and became locally injected into lechatelierite rims. Once formed, the melt prevented high-energy grain collisions. Unaffected quartz (which nevertheless may have seen pressures up to 22 GPa) in the frictionites perhaps escaped UHP overprint due to position in local pressure shadows and/or was sheared out from the adjacent caciritic rock mass into the melt. Our results help to better constrain numerical simulations of P-T-conditions in rockslides. Since our investigation only provides limiting estimates the actual P-T conditions in deep shear levels of rockslides exceeding the volume of the Koefels event might be even higher.</p><p> </p><p>References:</p><p>Fritz et al. 2011: International Journal of Impact Engineering, 38:440</p><p>Heuberger et al. 1984: Mountain Research and Development, 4:345</p><p>Kowitz et al. 2013: Earth and Planetary Science Letters, 384:17</p><p>McMillan et al. 1992: Physics and Chemistry of Minerals, 19:71</p>


Clay Minerals ◽  
1984 ◽  
Vol 19 (1) ◽  
pp. 21-28 ◽  
Author(s):  
H. W. Müller ◽  
G. Riedmüller ◽  
B. Schwaighofer

AbstractMineralogical investigations of weathered andesitic bedrock and overburden on the valley flank of the Tondano river, Manado, Sulawesi, indicated that these had been subjected to different weathering conditions. The underlying andesite was completely altered to 7Å-halloysite and allophane. In the transported latosols of the overburden, 10Å- and 7Å-halloysites were found. The ratio of 10Å- to 7Å-halloysite increased linearly with depth in the profile. It is considered that weathering of the andesitic bedrock reflects a palaeoclimate with more strongly pronounced seasonal desiccation and lower annual rainfall. Neoformations by weathering of the overburden took place under the recent tropical climate.


Sign in / Sign up

Export Citation Format

Share Document