neural field theory
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 13)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
pp. 109-116
Author(s):  
Evgenii Burlakov ◽  
Vitaly Verkhlyutov ◽  
Vadim Ushakov

2021 ◽  
Vol 15 ◽  
Author(s):  
Peter A. Robinson ◽  
Natasha C. Gabay ◽  
Tara Babaie-Janvier

Physiologically based neural field theory of the corticothalamic system is used to calculate the responses evoked by trains of auditory stimuli that correspond to different cortical locations via the tonotopic map. The results are shown to account for standard and deviant evoked responses to frequent and rare stimuli, respectively, in the auditory oddball paradigms widely used in human cognitive studies, and the so-called mismatch negativity between them. It also reproduces a wide range of other effects and variants, including the mechanism by which a change in standard responses relative to deviants can develop through adaptation, different responses when two deviants are presented in a row or a standard is presented after two deviants, relaxation of standard responses back to deviant form after a stimulus-free period, and more complex sequences. Some cases are identified in which adaptation does not account for the whole difference between standard and deviant responses. The results thus provide a systematic means to determine how much of the response is due to adaptation in the system comprising the primary auditory cortex and medial geniculate nucleus, and how much requires involvement of higher-level processing.


2020 ◽  
Vol 102 (6) ◽  
Author(s):  
K. N. Mukta ◽  
P. A. Robinson ◽  
J. C. Pagès ◽  
N. C. Gabay ◽  
Xiao Gao

2020 ◽  
Vol 114 (6) ◽  
pp. 643-651
Author(s):  
Xiao Gao ◽  
P. A. Robinson

AbstractSpectral analysis and neural field theory are used to investigate the role of local connections in brain connectivity matrices (CMs) that quantify connectivity between pairs of discretized brain regions. This work investigates how the common procedure of omitting such self-connections (i.e., the diagonal elements of CMs) in published studies of brain connectivity affects the properties of functional CMs (fCMs) and the mutually consistent effective CMs (eCMs) that correspond to them. It is shown that retention of self-connections in the fCM calculated from two-point activity covariances is essential for the fCM to be a true covariance matrix, to enable correct inference of the direct total eCMs from the fCM, and to ensure their compatibility with it; the deCM and teCM represent the strengths of direct connections and all connections between points, respectively. When self-connections are retained, inferred eCMs are found to have net inhibitory self-connections that represent the local inhibition needed to balance excitation via white matter fibers at longer ranges. This inference of spatially unresolved connectivity exemplifies the power of spectral connectivity methods, which also enable transformation of CMs to compact diagonal forms that allow accurate approximation of the fCM and total eCM in terms of just a few modes, rather than the full $$N^2$$ N 2 CM entries for connections between N brain regions. It is found that omission of fCM self-connections affects both local and long-range connections in eCMs, so they cannot be omitted even when studying the large-scale. Moreover, retention of local connections enables inference of subgrid short-range inhibitory connectivity. The results are verified and illustrated using the NKI-Rockland dataset from the University of Southern California Multimodal Connectivity Database. Deletion of self-connections is common in the field; this does not affect case-control studies but the present results imply that such fCMs must have self-connections restored before eCMs can be inferred from them.


Sign in / Sign up

Export Citation Format

Share Document