distribution network design
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 33)

H-INDEX

27
(FIVE YEARS 2)

Author(s):  
André Snoeck ◽  
Matthias Winkenbach

Online and omnichannel retailers are proposing increasingly tight delivery deadlines, moving toward instant on-demand delivery. To operate last-mile distribution systems with such tight delivery deadlines efficiently, defining the right strategic distribution network design is of paramount importance. However, this problem exceeds the complexity of the strategic design of traditional last-mile distribution networks for two main reasons: (1) the reduced time available for order handling and delivery and (2) the absence of a delivery cut-off time that clearly separates order collection and delivery periods. This renders state-of-the-art last-mile distribution network design models inappropriate, as they assume periodic order fulfillment based on a delivery cutoff. In this study, we propose a metamodel simulation-based optimization (SO) approach to strategically design last-mile distribution networks with tight delivery deadlines. Our methodology integrates an in-depth simulator with traditional optimization techniques by extending a traditional black-box SO algorithm with an analytical model that captures the underlying structure of the decision problem. Based on a numerical study inspired by the efforts of a global fashion company to introduce on-demand distribution with tight delivery deadlines in Manhattan, we show that our approach outperforms contemporary SO approaches as well as deterministic and stochastic programming methods. In particular, our method systematically yields network designs with superior expected cost performance. Furthermore, it converges to good solutions with a lower computational budget and is more consistent in finding high-quality solutions. We show how congestion effects in the processing of orders at facilities negatively impact the network performance through late delivery of orders and reduced potential for consolidation. In addition, we show that the sensitivity of the optimal network design to congestion effects in order processing at the facilities increases as delivery deadlines become increasingly tight.


Author(s):  
Junming Liu ◽  
Weiwei Chen ◽  
Jingyuan Yang ◽  
Hui Xiong ◽  
Can Chen

The emergence of online retailers has brought new opportunities to the design of their distribution networks. Notably, for online retailers that do not operate offline stores, their target customers are more sensitive to the quality of logistic services, such as delivery speed and reliability. This paper is motivated by a leading online retailer for cosmetic products on Taobao.com that aimed to improve its logistics efficiency by redesigning its centralized distribution network into a multilevel one. The multilevel distribution network consists of a layer of primary facilities to hold stocks from suppliers and transshipment and a layer of secondary facilities to provide last-mile delivery. There are two major challenges of designing such a facility network. First, online customers can respond significantly to the change of logistics efficiency with the redesigned network, thereby rendering the network optimized under the original demand distribution suboptimal. Second, because online retailers have relatively small sales volumes and are very flexible in choosing facility locations, the facility candidate set can be large, causing the facility location optimization challenging to solve. To this end, we propose an iterative prediction-and-optimization strategy for distribution network design. Specifically, we first develop an artificial neural network (ANN) to predict customer demands, factoring in the logistic service quality given the network and the city-level purchasing power based on demographic statistics. Then, a mixed integer linear programming (MILP) model is formulated to choose facility locations with minimum transportation, facility setup, and package processing costs. We further develop an efficient two-stage heuristic for computing high-quality solutions to the MILP model, featuring an agglomerative hierarchical clustering algorithm and an expectation and maximization algorithm. Subsequently, the ANN demand predictor and two-stage heuristic are integrated for iterative network design. Finally, using a real-world data set, we validate the demand prediction accuracy and demonstrate the mutual interdependence between the demand and network design. Summary of Contribution: We propose an iterative prediction-and-optimization algorithm for multilevel distribution network design for e-logistics and evaluate its operational value for online retailers. We address the issue of the interplay between distribution network design and the demand distribution using an iterative framework. Further, combining the idea in operational research and data mining, our paper provides an end-to-end solution that can provide accurate predictions of online sales distribution, subsequently solving large-scale optimization problems for distribution network design problems.


Sign in / Sign up

Export Citation Format

Share Document