congestion effects
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 15)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
André Snoeck ◽  
Matthias Winkenbach

Online and omnichannel retailers are proposing increasingly tight delivery deadlines, moving toward instant on-demand delivery. To operate last-mile distribution systems with such tight delivery deadlines efficiently, defining the right strategic distribution network design is of paramount importance. However, this problem exceeds the complexity of the strategic design of traditional last-mile distribution networks for two main reasons: (1) the reduced time available for order handling and delivery and (2) the absence of a delivery cut-off time that clearly separates order collection and delivery periods. This renders state-of-the-art last-mile distribution network design models inappropriate, as they assume periodic order fulfillment based on a delivery cutoff. In this study, we propose a metamodel simulation-based optimization (SO) approach to strategically design last-mile distribution networks with tight delivery deadlines. Our methodology integrates an in-depth simulator with traditional optimization techniques by extending a traditional black-box SO algorithm with an analytical model that captures the underlying structure of the decision problem. Based on a numerical study inspired by the efforts of a global fashion company to introduce on-demand distribution with tight delivery deadlines in Manhattan, we show that our approach outperforms contemporary SO approaches as well as deterministic and stochastic programming methods. In particular, our method systematically yields network designs with superior expected cost performance. Furthermore, it converges to good solutions with a lower computational budget and is more consistent in finding high-quality solutions. We show how congestion effects in the processing of orders at facilities negatively impact the network performance through late delivery of orders and reduced potential for consolidation. In addition, we show that the sensitivity of the optimal network design to congestion effects in order processing at the facilities increases as delivery deadlines become increasingly tight.


2021 ◽  
Vol 33 (4) ◽  
pp. 551-563
Author(s):  
Huang Yan ◽  
Xiaoning Zhang

The need to make effective plans for locating transportation hubs is of increasing importance in the megaregional area, as recent research suggests that the growing intercity travel demand affects the efficiency of a megaregional transportation system. This paper investigates a hierarchical facility location problem in a megaregional passenger transportation network. The aim of the study is to determine the locations of hub facilities at different hierarchical levels and distribute the demands to these facilities with minimum total cost, including investment, transportation, and congestion costs. The problem is formulated as a mixed-integer nonlinear programming model considering the service availability structure and hub congestion effects. A case study is designed to demonstrate the effectiveness of the proposed model in the Wuhan metropolitan area. The results show that the congestion effects can be addressed by reallocating the demand to balance the hub utilisation or constructing new hubs to increase the network capacity. The methods of appropriately locating hubs and distributing traffic flows are proposed to optimise the megaregional passenger transportation networks, which has important implications for decision makers.


Author(s):  
Tobias Harks ◽  
Anja Schedel

AbstractWe study a Stackelberg game with multiple leaders and a continuum of followers that are coupled via congestion effects. The followers’ problem constitutes a nonatomic congestion game, where a population of infinitesimal players is given and each player chooses a resource. Each resource has a linear cost function which depends on the congestion of this resource. The leaders of the Stackelberg game each control a resource and determine a price per unit as well as a service capacity for the resource influencing the slope of the linear congestion cost function. As our main result, we establish existence of pure-strategy Nash–Stackelberg equilibria for this multi-leader Stackelberg game. The existence result requires a completely new proof approach compared to previous approaches, since the leaders’ objective functions are discontinuous in our game. As a consequence, best responses of leaders do not always exist, and thus standard fixed-point arguments á la Kakutani (Duke Math J 8(3):457–458, 1941) are not directly applicable. We show that the game is C-secure (a concept introduced by Reny (Econometrica 67(5):1029–1056, 1999) and refined by McLennan et al. (Econometrica 79(5):1643–1664, 2011), which leads to the existence of an equilibrium. We furthermore show that the equilibrium is essentially unique, and analyze its efficiency compared to a social optimum. We prove that the worst-case quality is unbounded. For identical leaders, we derive a closed-form expression for the efficiency of the equilibrium.


Logistics ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 3
Author(s):  
Uday Venkatadri ◽  
Shentao Wang ◽  
Ashok Srinivasan

This paper is concerned with demand planning for internal supply chains consisting of workstations, production facilities, warehouses, and transportation links. We address the issue of how to help a supplier firmly accept orders and subsequently plan to fulfill demand. We first formulate a linear aggregate planning model for demand management that incorporates elements of order promising, recipe run constraints, and capacity limitations. Using several scenarios, we discuss the use of the model in demand planning and capacity planning to help a supplier firmly respond to requests for quotations. We extend the model to incorporate congestion effects at assembly and blending nodes using clearing functions; the resulting model is nonlinear. We develop and test two algorithms to solve the nonlinear model: one based on inner approximation and the other on outer approximation.


Author(s):  
Ozen IC ◽  
Tuncay B

Purpose/Objectives: Since the start of the Syrian war, a significant population has moved out of the Syrian Republic into its neighborhood environs. Turkey has had a significant effect on its health system and society, as a significant new number has entered the Turkish society, increasingly using the Turkish healthcare system. Our aim is not only to numerically identify the size of the effect to the Turkish system, but to identify the domestic resources that allow the Turkish healthcare system and society to build up resilience against the significant health demand shock. The main objectives of this study is 1) To understand whether there is a complementarity between the earlier efforts in the Turkish health system and the current capabilities that is necessary to meet the Syrian Populations Health Needs. 2) To understand if the newly revamped Turkish Primary Healthcare System Provide a crucial buffer for the negative congestion effects that could have been caused by such a significant and relatively unhealthy refugee population being integrated into the health system, at a relatively rapid pace.


2021 ◽  
pp. 71-87
Author(s):  
Daniel Schmand

AbstractPredictions such as forecasts of congestion effects in transportation networks can be based on complex simulations that include many aspects of actual transportation systems. On the other hand, rigorous mathematical traffic models give rise to theoretical analyses, very general statements, and various traffic optimization opportunities. There has been a huge development in the last years to make mathematical traffic models more realistic. This chapter provides an overview of the mathematical traffic models developed recently and some state-of-the-art results.


Author(s):  
Fernando Bernstein ◽  
Gregory A. DeCroix ◽  
N. Bora Keskin

Problem definition: This paper explores the impact of competition between platforms in the sharing economy. Examples include the cases of Uber and Lyft in the context of ride-sharing platforms. In particular, we consider competition between two platforms that offer a common service (e.g., rides) through a set of independent service providers (e.g., drivers) to a market of customers. Each platform sets a price that is charged to customers for obtaining the service provided by a driver. A portion of that price is paid to the driver who delivers the service. Both customers’ and drivers’ utilities are sensitive to the payment terms set by the platform and are also sensitive to congestion in the system (given by the relative number of customers and drivers in the market). We consider two possible settings. The first one, termed “single-homing,” assumes that drivers work through a single platform. In the second setting, termed “multihoming” (or “multiapping,” as it is known in practice), drivers deliver their service through both platforms. Academic/practical relevance: This is one of the first papers to study competition and multihoming in the presence of congestion effects typically observed in the sharing economy. We leverage the model to study some practical questions that have received significant press attention (and stirred some controversies) in the ride-sharing industry. The first involves the issue of surge pricing. The second involves the increasingly common practice of drivers choosing to operate on multiple platforms (multihoming). Methodology: We formulate our problem as a pricing game between two platforms and employ the concept of a Nash equilibrium to analyze equilibrium outcomes in various settings. Results: In both the single-homing and multihoming settings, we study the equilibrium prices that emerge from the competitive interaction between the platforms and explore the supply and demand outcomes that can arise at equilibrium. We build on these equilibrium results to study the impact of surge pricing in response to a surge in demand and to examine the incentives at play when drivers engage in multihoming. Managerial implications: We find that raising prices in response to a surge in demand makes drivers and customers better off than if platforms were constrained to charge the same prices that would arise under normal demand levels. We also compare drivers’ and customers’ performance when all drivers either single-home or multihome. We find that although individual drivers may have an incentive to multihome, all players are worse off when all drivers multihome. We conclude by proposing an incentive mechanism to discourage multihoming.


Sign in / Sign up

Export Citation Format

Share Document