singular cardinal hypothesis
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
pp. 2150019
Author(s):  
Alejandro Poveda ◽  
Assaf Rinot ◽  
Dima Sinapova

In Part I of this series [5], we introduced a class of notions of forcing which we call [Formula: see text]-Prikry, and showed that many of the known Prikry-type notions of forcing that centers around singular cardinals of countable cofinality are [Formula: see text]-Prikry. We proved that given a [Formula: see text]-Prikry poset [Formula: see text] and a [Formula: see text]-name for a nonreflecting stationary set [Formula: see text], there exists a corresponding [Formula: see text]-Prikry poset that projects to [Formula: see text] and kills the stationarity of [Formula: see text]. In this paper, we develop a general scheme for iterating [Formula: see text]-Prikry posets, as well as verify that the Extender-based Prikry forcing is [Formula: see text]-Prikry. As an application, we blow-up the power of a countable limit of Laver-indestructible supercompact cardinals, and then iteratively kill all nonreflecting stationary subsets of its successor. This yields a model in which the singular cardinal hypothesis fails and simultaneous reflection of finite families of stationary sets holds.



2020 ◽  
pp. 2150003
Author(s):  
Rahman Mohammadpour ◽  
Boban Veličković

Starting with two supercompact cardinals we produce a generic extension of the universe in which a principle that we call [Formula: see text] holds. This principle implies [Formula: see text] and [Formula: see text], and hence the tree property at [Formula: see text] and [Formula: see text], the Singular Cardinal Hypothesis, and the failure of the weak square principle [Formula: see text], for all regular [Formula: see text]. In addition, it implies that the restriction of the approachability ideal [Formula: see text] to the set of ordinals of cofinality [Formula: see text] is the nonstationary ideal on this set. The consistency of this last statement was previously shown by W. Mitchell.





2013 ◽  
Vol 14 (1) ◽  
pp. 69-85 ◽  
Author(s):  
Hiroshi Sakai ◽  
Boban Veličković

AbstractWe study the consequences of stationary and semi-stationary set reflection. We show that the semi-stationary reflection principle implies the Singular Cardinal Hypothesis, the failure of the weak square principle, etc. We also consider two cardinal tree properties introduced recently by Weiss, and prove that they follow from stationary and semi-stationary set reflection augmented with a weak form of Martin’s Axiom. We also show that there are some differences between the two reflection principles, which suggests that stationary set reflection is analogous to supercompactness, whereas semi-stationary set reflection is analogous to strong compactness.



2013 ◽  
Vol 19 (4) ◽  
pp. 473-490 ◽  
Author(s):  
Jindřich Zapletal

AbstractI describe several ways in which forcing arguments can be used to yield clean and conceptual proofs of nonreducibility, ergodicity and other results in the theory of analytic equivalence relations. In particular, I present simple Borel equivalence relationsE, Fsuch that a natural proof of nonreducibility ofEtoFuses the independence of the Singular Cardinal Hypothesis at ℵω.



2012 ◽  
Vol 77 (3) ◽  
pp. 934-946 ◽  
Author(s):  
Dima Sinapova

AbstractWe show that given ω many supercompact cardinals, there is a generic extension in which the tree property holds at ℵω2+ 1 and the SCH fails at ℵω2.



2012 ◽  
Vol 192 (2) ◽  
pp. 719-762 ◽  
Author(s):  
Sy-David Friedman ◽  
Radek Honzik


2009 ◽  
Vol 09 (01) ◽  
pp. 139-157 ◽  
Author(s):  
ITAY NEEMAN

The tree property at κ+ states that there are no Aronszajn trees on κ+, or, equivalently, that every κ+ tree has a cofinal branch. For singular strong limit cardinals κ, there is tension between the tree property at κ+ and failure of the singular cardinal hypothesis at κ; the former is typically the result of the presence of strongly compact cardinals in the background, and the latter is impossible above strongly compacts. In this paper, we reconcile the two. We prove from large cardinals that the tree property at κ+ is consistent with failure of the singular cardinal hypothesis at κ.



Sign in / Sign up

Export Citation Format

Share Document