supercompact cardinals
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 5)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
pp. 2150019
Author(s):  
Alejandro Poveda ◽  
Assaf Rinot ◽  
Dima Sinapova

In Part I of this series [5], we introduced a class of notions of forcing which we call [Formula: see text]-Prikry, and showed that many of the known Prikry-type notions of forcing that centers around singular cardinals of countable cofinality are [Formula: see text]-Prikry. We proved that given a [Formula: see text]-Prikry poset [Formula: see text] and a [Formula: see text]-name for a nonreflecting stationary set [Formula: see text], there exists a corresponding [Formula: see text]-Prikry poset that projects to [Formula: see text] and kills the stationarity of [Formula: see text]. In this paper, we develop a general scheme for iterating [Formula: see text]-Prikry posets, as well as verify that the Extender-based Prikry forcing is [Formula: see text]-Prikry. As an application, we blow-up the power of a countable limit of Laver-indestructible supercompact cardinals, and then iteratively kill all nonreflecting stationary subsets of its successor. This yields a model in which the singular cardinal hypothesis fails and simultaneous reflection of finite families of stationary sets holds.


2020 ◽  
pp. 2150003
Author(s):  
Rahman Mohammadpour ◽  
Boban Veličković

Starting with two supercompact cardinals we produce a generic extension of the universe in which a principle that we call [Formula: see text] holds. This principle implies [Formula: see text] and [Formula: see text], and hence the tree property at [Formula: see text] and [Formula: see text], the Singular Cardinal Hypothesis, and the failure of the weak square principle [Formula: see text], for all regular [Formula: see text]. In addition, it implies that the restriction of the approachability ideal [Formula: see text] to the set of ordinals of cofinality [Formula: see text] is the nonstationary ideal on this set. The consistency of this last statement was previously shown by W. Mitchell.


2020 ◽  
pp. 1-34
Author(s):  
Alejandro Poveda ◽  
Assaf Rinot ◽  
Dima Sinapova

Abstract We introduce a class of notions of forcing which we call $\Sigma $ -Prikry, and show that many of the known Prikry-type notions of forcing that centers around singular cardinals of countable cofinality are $\Sigma $ -Prikry. We show that given a $\Sigma $ -Prikry poset $\mathbb P$ and a name for a non-reflecting stationary set T, there exists a corresponding $\Sigma $ -Prikry poset that projects to $\mathbb P$ and kills the stationarity of T. Then, in a sequel to this paper, we develop an iteration scheme for $\Sigma $ -Prikry posets. Putting the two works together, we obtain a proof of the following. Theorem. If $\kappa $ is the limit of a countable increasing sequence of supercompact cardinals, then there exists a forcing extension in which $\kappa $ remains a strong limit cardinal, every finite collection of stationary subsets of $\kappa ^+$ reflects simultaneously, and $2^\kappa =\kappa ^{++}$ .


2019 ◽  
Vol 20 (01) ◽  
pp. 2050003 ◽  
Author(s):  
Mohammad Golshani ◽  
Yair Hayut

Assuming the existence of a proper class of supercompact cardinals, we force a generic extension in which, for every regular cardinal [Formula: see text], there are [Formula: see text]-Aronszajn trees, and all such trees are special.


2019 ◽  
Vol 84 (3) ◽  
pp. 895-928
Author(s):  
MIHA E. HABIČ

AbstractThe concept of jointness for guessing principles, specifically ${\diamondsuit _\kappa }$ and various Laver diamonds, is introduced. A family of guessing sequences is joint if the elements of any given sequence of targets may be simultaneously guessed by the members of the family. While equivalent in the case of ${\diamondsuit _\kappa }$, joint Laver diamonds are nontrivial new objects. We give equiconsistency results for most of the large cardinals under consideration and prove sharp separations between joint Laver diamonds of different lengths in the case of θ-supercompact cardinals.


2018 ◽  
Vol 83 (1) ◽  
pp. 1-12 ◽  
Author(s):  
MAXWELL LEVINE

AbstractWe assume the existence of a supercompact cardinal and produce a model with weak square but no very good scale at a particular cardinal. This follows work of Cummings, Foreman, and Magidor, but uses a different approach. We produce another model, starting from countably many supercompact cardinals, where □K,<K holds but □K, λ fails for λ < K.


2017 ◽  
Vol 17 (02) ◽  
pp. 1750005 ◽  
Author(s):  
Giorgio Audrito ◽  
Matteo Viale

The resurrection axioms are forcing axioms introduced recently by Hamkins and Johnstone, developing on ideas of Chalons and Veličković. We introduce a stronger form of resurrection axioms (the iterated resurrection axioms [Formula: see text] for a class of forcings [Formula: see text] and a given ordinal [Formula: see text]), and show that [Formula: see text] implies generic absoluteness for the first-order theory of [Formula: see text] with respect to forcings in [Formula: see text] preserving the axiom, where [Formula: see text] is a cardinal which depends on [Formula: see text] ([Formula: see text] if [Formula: see text] is any among the classes of countably closed, proper, semiproper, stationary set preserving forcings). We also prove that the consistency strength of these axioms is below that of a Mahlo cardinal for most forcing classes, and below that of a stationary limit of supercompact cardinals for the class of stationary set preserving posets. Moreover, we outline that simultaneous generic absoluteness for [Formula: see text] with respect to [Formula: see text] and for [Formula: see text] with respect to [Formula: see text] with [Formula: see text] is in principle possible, and we present several natural models of the Morse–Kelley set theory where this phenomenon occurs (even for all [Formula: see text] simultaneously). Finally, we compare the iterated resurrection axioms (and the generic absoluteness results we can draw from them) with a variety of other forcing axioms, and also with the generic absoluteness results by Woodin and the second author.


2017 ◽  
Vol 82 (1) ◽  
pp. 272-291
Author(s):  
LAURA FONTANELLA ◽  
MENACHEM MAGIDOR

AbstractWe show that from infinitely many supercompact cardinals one can force a model of ZFC where both the tree property and the stationary reflection hold at אω2+1.


2015 ◽  
Vol 21 (3) ◽  
pp. 251-269 ◽  
Author(s):  
MATTHEW FOREMAN

AbstractWe introduce a natural principleStrong Chang Reflectionstrengthening the classical Chang Conjectures. This principle is between a huge and a two huge cardinal in consistency strength. In this note we prove that it implies the existence of an inner model with a huge cardinal. The technique we explore for building inner models with huge cardinals adapts to show thatdecisiveideals imply the existence of inner models with supercompact cardinals. Proofs for all of these claims can be found in [10].1,2


2015 ◽  
Vol 80 (1) ◽  
pp. 251-284
Author(s):  
SY-DAVID FRIEDMAN ◽  
PETER HOLY ◽  
PHILIPP LÜCKE

AbstractThis paper deals with the question whether the assumption that for every inaccessible cardinal κ there is a well-order of H(κ+) definable over the structure $\langle {\rm{H}}({\kappa ^ + }), \in \rangle$ by a formula without parameters is consistent with the existence of (large) large cardinals and failures of the GCH. We work under the assumption that the SCH holds at every singular fixed point of the ℶ-function and construct a class forcing that adds such a well-order at every inaccessible cardinal and preserves ZFC, all cofinalities, the continuum function, and all supercompact cardinals. Even in the absence of a proper class of inaccessible cardinals, this forcing produces a model of “V = HOD” and can therefore be used to force this axiom while preserving large cardinals and failures of the GCH. As another application, we show that we can start with a model containing an ω-superstrong cardinal κ and use this forcing to build a model in which κ is still ω-superstrong, the GCH fails at κ and there is a well-order of H(κ+) that is definable over H(κ+) without parameters. Finally, we can apply the forcing to answer a question about the definable failure of the GCH at a measurable cardinal.


Sign in / Sign up

Export Citation Format

Share Document