Itay Neeman. Aronszajn trees and failure of the Singular Cardinal Hypothesis. Journal of Mathematical Logic, vol. 9, no. 1 (2009), pp. 139–157. - Dima Sinapova. The tree property at אּω+1. Journal of Symbolic Logic, vol. 77, no. 1 (2012), pp. 279–290. - Dima Sinapova. The tree property and the failure of SCH at uncountable cofinality. Archive for Mathematical Logic, vol. 51, no. 5-6 (2012), pp. 553–562. - Dima Sinapova. The tree property and the failure of the Singular Cardinal Hypothesis at אּω2. Journal of Symbolic Logic, vol. 77, no. 3 (2012), pp. 934–946. - Spencer Unger. Aronszajn trees and the successors of a singular cardinal. Archive for Mathematical Logic, vol. 52, no. 5-6 (2013), pp. 483–496. - Itay Neeman. The tree property up to אּω+1. Journal of Symbolic Logic. vol. 79, no. 2 (2014), pp. 429–459.

2015 ◽  
Vol 21 (2) ◽  
pp. 188-192
Author(s):  
James Cummings
2009 ◽  
Vol 09 (01) ◽  
pp. 139-157 ◽  
Author(s):  
ITAY NEEMAN

The tree property at κ+ states that there are no Aronszajn trees on κ+, or, equivalently, that every κ+ tree has a cofinal branch. For singular strong limit cardinals κ, there is tension between the tree property at κ+ and failure of the singular cardinal hypothesis at κ; the former is typically the result of the presence of strongly compact cardinals in the background, and the latter is impossible above strongly compacts. In this paper, we reconcile the two. We prove from large cardinals that the tree property at κ+ is consistent with failure of the singular cardinal hypothesis at κ.


2012 ◽  
Vol 77 (3) ◽  
pp. 934-946 ◽  
Author(s):  
Dima Sinapova

AbstractWe show that given ω many supercompact cardinals, there is a generic extension in which the tree property holds at ℵω2+ 1 and the SCH fails at ℵω2.


2020 ◽  
pp. 2150003
Author(s):  
Rahman Mohammadpour ◽  
Boban Veličković

Starting with two supercompact cardinals we produce a generic extension of the universe in which a principle that we call [Formula: see text] holds. This principle implies [Formula: see text] and [Formula: see text], and hence the tree property at [Formula: see text] and [Formula: see text], the Singular Cardinal Hypothesis, and the failure of the weak square principle [Formula: see text], for all regular [Formula: see text]. In addition, it implies that the restriction of the approachability ideal [Formula: see text] to the set of ordinals of cofinality [Formula: see text] is the nonstationary ideal on this set. The consistency of this last statement was previously shown by W. Mitchell.


2021 ◽  
Vol 27 (2) ◽  
pp. 221-222
Author(s):  
Alejandro Poveda

AbstractThe dissertation under comment is a contribution to the area of Set Theory concerned with the interactions between the method of Forcing and the so-called Large Cardinal axioms.The dissertation is divided into two thematic blocks. In Block I we analyze the large-cardinal hierarchy between the first supercompact cardinal and Vopěnka’s Principle (Part I). In turn, Block II is devoted to the investigation of some problems arising from Singular Cardinal Combinatorics (Part II and Part III).We commence Part I by investigating the Identity Crisis phenomenon in the region comprised between the first supercompact cardinal and Vopěnka’s Principle. As a result, we generalize Magidor’s classical theorems [2] to this higher region of the large-cardinal hierarchy. Also, our analysis allows to settle all the questions that were left open in [1]. Finally, we conclude Part I by presenting a general theory of preservation of $C^{(n)}$ -extendible cardinals under class forcing iterations. From this analysis we derive several applications. For instance, our arguments are used to show that an extendible cardinal is consistent with “ $(\lambda ^{+\omega })^{\mathrm {HOD}}<\lambda ^+$ , for every regular cardinal $\lambda $ .” In particular, if Woodin’s HOD Conjecture holds, and therefore it is provable in ZFC + “There exists an extendible cardinal” that above the first extendible cardinal every singular cardinal $\lambda $ is singular in HOD and $(\lambda ^+)^{\textrm {{HOD}}}=\lambda ^+$ , there may still be no agreement at all between V and HOD about successors of regular cardinals.In Part II and Part III we analyse the relationship between the Singular Cardinal Hypothesis (SCH) with other relevant combinatorial principles at the level of successors of singular cardinals. Two of these are the Tree Property and the Reflection of Stationary sets, which are central in Infinite Combinatorics.Specifically, Part II is devoted to prove the consistency of the Tree Property at both $\kappa ^+$ and $\kappa ^{++}$ , whenever $\kappa $ is a strong limit singular cardinal witnessing an arbitrary failure of the SCH. This generalizes the main result of [3] in two senses: it allows arbitrary cofinalities for $\kappa $ and arbitrary failures for the SCH.In the last part of the dissertation (Part III) we introduce the notion of $\Sigma $ -Prikry forcing. This new concept allows an abstract and uniform approach to the theory of Prikry-type forcings and encompasses several classical examples of Prikry-type forcing notions, such as the classical Prikry forcing, the Gitik-Sharon poset, or the Extender Based Prikry forcing, among many others.Our motivation in this part of the dissertation is to prove an iteration theorem at the level of the successor of a singular cardinal. Specifically, we aim for a theorem asserting that every $\kappa ^{++}$ -length iteration with support of size $\leq \kappa $ has the $\kappa ^{++}$ -cc, provided the iterates belong to a relevant class of $\kappa ^{++}$ -cc forcings. While there are a myriad of works on this vein for regular cardinals, this contrasts with the dearth of investigations in the parallel context of singular cardinals. Our main contribution is the proof that such a result is available whenever the class of forcings under consideration is the family of $\Sigma $ -Prikry forcings. Finally, and as an application, we prove that it is consistent—modulo large cardinals—the existence of a strong limit cardinal $\kappa $ with countable cofinality such that $\mathrm {SCH}_\kappa $ fails and every finite family of stationary subsets of $\kappa ^+$ reflects simultaneously.


2019 ◽  
Vol 49 (4) ◽  
pp. 703-726
Author(s):  
Alexander Roberts

AbstractFollowing Smiley’s (The Journal of Symbolic Logic, 28, 113–134 1963) influential proposal, it has become standard practice to characterise notions of relative necessity in terms of simple strict conditionals. However, Humberstone (Reports on Mathematical Logic, 13, 33–42 1981) and others have highlighted various flaws with Smiley’s now standard account of relative necessity. In their recent article, Hale and Leech (Journal of Philosophical Logic, 46, 1–26 2017) propose a novel account of relative necessity designed to overcome the problems facing the standard account. Nevertheless, the current article argues that Hale & Leech’s account suffers from its own defects, some of which Hale & Leech are aware of but underplay. To supplement this criticism, the article offers an alternative account of relative necessity which overcomes these defects. This alternative account is developed in a quantified modal propositional logic and is shown model-theoretically to meet several desiderata of an account of relative necessity.


2020 ◽  
pp. 1-9
Author(s):  
JAMES CUMMINGS ◽  
YAIR HAYUT ◽  
MENACHEM MAGIDOR ◽  
ITAY NEEMAN ◽  
DIMA SINAPOVA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document