lehmer's conjecture
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 3)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
Takaaki Musha

Wigner distribution is a tool for signal processing to obtain instantaneous spectrum of a signal. By using Wigner distribution analysis, another representation of the Euler product can be obtained for Dirichlet series of the Ramanujan tau function. From which, it can be proved that the Ramanujan tau function never become zero for all numbers.



Author(s):  
Trajan Hammonds ◽  
Casimir Kothari ◽  
Noah Luntzlara ◽  
Steven J. Miller ◽  
Jesse Thorner ◽  
...  

Let [Formula: see text] be Ramanujan’s tau function, defined by the discriminant modular form [Formula: see text] (this is the unique holomorphic normalized cuspidal newform of weight 12 and level 1). Lehmer’s conjecture asserts that [Formula: see text] for all [Formula: see text]; since [Formula: see text] is multiplicative, it suffices to study primes [Formula: see text] for which [Formula: see text] might possibly be zero. Assuming standard conjectures for the twisted symmetric power [Formula: see text]-functions associated to [Formula: see text] (including GRH), we prove that if [Formula: see text], then [Formula: see text] a substantial improvement on the implied constant in previous work. To achieve this, under the same hypotheses, we prove an explicit version of the Sato–Tate conjecture for primes in arithmetic progressions.



Author(s):  
Malik Amir ◽  
Letong Hong

AbstractInspired by Lehmer’s conjecture on the non-vanishing of the Ramanujan $$\tau $$ τ -function, one may ask whether an odd integer $$\alpha $$ α can be equal to $$\tau (n)$$ τ ( n ) or any coefficient of a newform f(z). Balakrishnan, Craig, Ono and Tsai used the theory of Lucas sequences and Diophantine analysis to characterize non-admissible values of newforms of even weight $$k\ge 4$$ k ≥ 4 . We use these methods for weight 2 and 3 newforms and apply our results to L-functions of modular elliptic curves and certain K3 surfaces with Picard number $$\ge 19$$ ≥ 19 . In particular, for the complete list of weight 3 newforms $$f_\lambda (z)=\sum a_\lambda (n)q^n$$ f λ ( z ) = ∑ a λ ( n ) q n that are $$\eta $$ η -products, and for $$N_\lambda $$ N λ the conductor of some elliptic curve $$E_\lambda $$ E λ , we show that if $$|a_\lambda (n)|<100$$ | a λ ( n ) | < 100 is odd with $$n>1$$ n > 1 and $$(n,2N_\lambda )=1$$ ( n , 2 N λ ) = 1 , then $$\begin{aligned} a_\lambda (n) \in&\{-5,9,\pm 11,25, \pm 41, \pm 43, -45,\pm 47,49, \pm 53,55, \pm 59, \pm 61,\\&\pm 67, -69,\pm 71,\pm 73,75, \pm 79,\pm 81, \pm 83, \pm 89,\pm 93 \pm 97, 99\}. \end{aligned}$$ a λ ( n ) ∈ { - 5 , 9 , ± 11 , 25 , ± 41 , ± 43 , - 45 , ± 47 , 49 , ± 53 , 55 , ± 59 , ± 61 , ± 67 , - 69 , ± 71 , ± 73 , 75 , ± 79 , ± 81 , ± 83 , ± 89 , ± 93 ± 97 , 99 } . Assuming the Generalized Riemann Hypothesis, we can rule out a few more possibilities leaving $$\begin{aligned} a_\lambda (n) \in \{-5,9,\pm 11,25,-45,49,55,-69,75,\pm 81,\pm 93, 99\}. \end{aligned}$$ a λ ( n ) ∈ { - 5 , 9 , ± 11 , 25 , - 45 , 49 , 55 , - 69 , 75 , ± 81 , ± 93 , 99 } .



Author(s):  
Jennifer S. Balakrishnan ◽  
William Craig ◽  
Ken Ono




2017 ◽  
Vol 171 ◽  
pp. 145-154
Author(s):  
Jan-Willem M. van Ittersum


10.37236/2834 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Graeme Taylor ◽  
Gary Greaves

We solve Lehmer's problem for a class of polynomials arising from Hermitian matrices over the Eisenstein and Gaussian integers, that is, we show that all such polynomials have Mahler measure at least Lehmer's number $\tau_0 = 1.17628\dots$.





2011 ◽  
Vol 75 (6) ◽  
pp. 1093-1106
Author(s):  
Eiichi Bannai ◽  
Tsuyoshi Miezaki ◽  
Vladimir A Yudin


Sign in / Sign up

Export Citation Format

Share Document