glutamate receptor trafficking
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 6)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
pp. 1-16
Author(s):  
Peter U. Hámor ◽  
Marek Schwendt

Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system that guides developmental and experience-dependent changes in many cellular substrates and brain circuits, through the process collectively referred to as neurobehavioral plasticity. Regulation of cell surface expression and membrane trafficking of glutamate receptors represents an important mechanism that assures optimal excitatory transmission, and at the same time, also allows for fine-tuning neuronal responses to glutamate. On the other hand, there is growing evidence implicating dysregulated glutamate receptor trafficking in the pathophysiology of several neuropsychiatric disorders. This review provides up-to-date information on the molecular determinants regulating trafficking and surface expression of metabotropic glutamate (mGlu) receptors in the rodent and human brain and discusses the role of mGluR trafficking in maladaptive synaptic plasticity produced by addictive drugs. As substantial evidence links glutamatergic dysfunction to the progression and the severity of drug addiction, advances in our understanding of mGluR trafficking may provide opportunities for the development of novel pharmacotherapies of addiction and other neuropsychiatric disorders.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kento Ojima ◽  
Kazuki Shiraiwa ◽  
Kyohei Soga ◽  
Tomohiro Doura ◽  
Mikiko Takato ◽  
...  

AbstractThe regulation of glutamate receptor localization is critical for development and synaptic plasticity in the central nervous system. Conventional biochemical and molecular biological approaches have been widely used to analyze glutamate receptor trafficking, especially for α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate-type glutamate receptors (AMPARs). However, conflicting findings have been reported because of a lack of useful tools for analyzing endogenous AMPARs. Here, we develop a method for the rapid and selective labeling of AMPARs with chemical probes, by combining affinity-based protein labeling and bioorthogonal click chemistry under physiological temperature in culture medium. This method allows us to quantify AMPAR distribution and trafficking, which reveals some unique features of AMPARs, such as a long lifetime and a rapid recycling in neurons. This method is also successfully expanded to selectively label N-methyl-D-aspartate-type glutamate receptors. Thus, bioorthogonal two-step labeling may be a versatile tool for investigating the physiological and pathophysiological roles of glutamate receptors in neurons.


2020 ◽  
Author(s):  
Kento Ojima ◽  
Kazuki Shiraiwa ◽  
Tomohiro Doura ◽  
Mikiko Takato ◽  
Kazuhiro Komatsu ◽  
...  

ABSTRACTThe regulation of glutamate receptor localization is critical for development and synaptic plasticity in the central nervous system. Conventional biochemical and molecular biological approaches have been widely used to analyze glutamate receptor trafficking, especially for AMPA-type glutamate receptors (AMPARs). However, conflicting findings have been reported because of a lack of useful tools for analyzing endogenous AMPARs. Here, we develop a new method for the rapid and selective labeling of chemical probes to AMPARs by combining affinity-based protein labeling and bioorthogonal click chemistry under physiological conditions. This method allowed us to quantify AMPAR distribution and trafficking, which revealed some unique features of AMPARs, such as a long lifetime and a rapid recycling in neurons. This method was also successfully expanded to selectively label NMDA-type glutamate receptors. Thus, bioorthogonal two-step labeling may be a versatile tool for investigating the physiological and pathophysiological roles of glutamate receptors in neurons.


2019 ◽  
Vol 39 (17) ◽  
pp. 3188-3203 ◽  
Author(s):  
Bruce G. Mockett ◽  
Diane Guévremont ◽  
Megan K. Elder ◽  
Karen D. Parfitt ◽  
Katie Peppercorn ◽  
...  

2018 ◽  
Vol 115 (27) ◽  
pp. 7111-7116 ◽  
Author(s):  
Bo Am Seo ◽  
Taesup Cho ◽  
Daniel Z. Lee ◽  
Joong-jae Lee ◽  
Boyoung Lee ◽  
...  

Mutations in the human LARGE gene result in severe intellectual disability and muscular dystrophy. How LARGE mutation leads to intellectual disability, however, is unclear. In our proteomic study, LARGE was found to be a component of the AMPA-type glutamate receptor (AMPA-R) protein complex, a main player for learning and memory in the brain. Here, our functional study of LARGE showed that LARGE at the Golgi apparatus (Golgi) negatively controlled AMPA-R trafficking from the Golgi to the plasma membrane, leading to down-regulated surface and synaptic AMPA-R targeting. In LARGE knockdown mice, long-term potentiation (LTP) was occluded by synaptic AMPA-R overloading, resulting in impaired contextual fear memory. These findings indicate that the fine-tuning of AMPA-R trafficking by LARGE at the Golgi is critical for hippocampus-dependent memory in the brain. Our study thus provides insights into the pathophysiology underlying cognitive deficits in brain disorders associated with intellectual disability.


2016 ◽  
Vol 12 ◽  
pp. P1040-P1041
Author(s):  
Joanna M. Williams ◽  
Diane Guevremont ◽  
Bruce Mockett ◽  
Katie Peppercorn ◽  
Warren P. Tate ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document