good correspondence
Recently Published Documents


TOTAL DOCUMENTS

569
(FIVE YEARS 170)

H-INDEX

38
(FIVE YEARS 5)

Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 181
Author(s):  
Anna Landsmann ◽  
Jann Wieler ◽  
Patryk Hejduk ◽  
Alexander Ciritsis ◽  
Karol Borkowski ◽  
...  

The aim of this study was to investigate the potential of a machine learning algorithm to accurately classify parenchymal density in spiral breast-CT (BCT), using a deep convolutional neural network (dCNN). In this retrospectively designed study, 634 examinations of 317 patients were included. After image selection and preparation, 5589 images from 634 different BCT examinations were sorted by a four-level density scale, ranging from A to D, using ACR BI-RADS-like criteria. Subsequently four different dCNN models (differences in optimizer and spatial resolution) were trained (70% of data), validated (20%) and tested on a “real-world” dataset (10%). Moreover, dCNN accuracy was compared to a human readout. The overall performance of the model with lowest resolution of input data was highest, reaching an accuracy on the “real-world” dataset of 85.8%. The intra-class correlation of the dCNN and the two readers was almost perfect (0.92) and kappa values between both readers and the dCNN were substantial (0.71–0.76). Moreover, the diagnostic performance between the readers and the dCNN showed very good correspondence with an AUC of 0.89. Artificial Intelligence in the form of a dCNN can be used for standardized, observer-independent and reliable classification of parenchymal density in a BCT examination.


2022 ◽  
Vol 14 (2) ◽  
pp. 662
Author(s):  
Lorenzo Domenichini ◽  
Andrea Paliotto ◽  
Monica Meocci ◽  
Valentina Branzi

Too often the identification of critical road sites is made by “accident-based” methods that consider the occurred accidents’ number. Nevertheless, such a procedure may encounter some difficulties when an agency does not have reliable and complete crash data at the site level (e.g., accidents contributing factors not clear or approximate accident location) or when crashes are underreported. Furthermore, relying on accident data means waiting for them to occur with the related consequences (possible deaths and injuries). A non-accident-based approach has been proposed by PIARC. This approach involves the application of the Human Factors Evaluation Tool (HFET), which is based on the principles of Human Factors (HF). The HFET can be applied to road segments by on-site inspections and provides a numerical performance measure named Human Factors Scores (HFS). This paper analyses which relationship exists between the results of the standard accident-based methods and those obtainable with HFET, based on the analysis of self-explaining and ergonomic features of the infrastructure. The study carried out for this purpose considered 23 km of two-way two-lane roads in Italy. A good correspondence was obtained, meaning that high risky road segments identified by the HFS correspond to road segments already burdened by a high number of accidents. The results demonstrated that the HFET allows for identifying of road segments requiring safety improvements even if accident data are unavailable. It allows for improving a proactive NSS, avoiding waiting for accidents to occur.


MAUSAM ◽  
2021 ◽  
Vol 52 (1) ◽  
pp. 67-82
Author(s):  
J. R. KULKARNI ◽  
M. MUJUMDAR ◽  
S. P. GHARGE ◽  
V. SATYAN ◽  
G. B. PANT

Earlier investigations into the epochal behavior of fluctuations in All India Summer Monsoon Rainfall (AISMR) have indicated the existence of a Low Frequency Mode (LFM) in the 60-70 years range. One of the probable sources of this variability may be due to changes in solar irradiance. To investigate this, time series of 128-year solar irradiance data from 1871-1998 has been examined. The Wavelet Transform (WT) method is applied to extract the LFM from these time series, which show a very good correspondence. A case study has been carried out to test the sensitivity of AISMR to solar irradiance. The General Circulation Model (GCM) of the Center of Ocean-Land-Atmosphere (COLA) has been integrated in the control run (using the climatological value of solar constant i.e., 1365 Wm-2) and in the enhanced solar constant condition (enhanced by 10 Wm-2) for summer monsoon season of 1986. The study shows that the large scale atmospheric circulation over the Indian region, in the enhanced solar constant scenario is favorable to good monsoon activity. A conceptual model for the impact of solar irradiance on the AISMR at LFM is also suggested.


Author(s):  
V.G. Griguletsky ◽  

The article provides a brief analysis of the results of plot and field experiments to study the productivity (yield) of sunflower, depending on the area of plant nutrition, performed at VNIIMK. Based on the analysis of the experimental dependencies that determine the change in yield, the following statement is applied: yield (y) and its increase rise with an increase in the amount of growth factor (x) and are proportional to the amount of yield (A - y) that does not reach the maximum the limiting value (A), and the possible yield value (B + y), is higher than a certain minimum (initial) value (B) of the yield. The analytic formulas for the quantitative determination of yield value (у), maximum limiting yield (A), amount of nutrients in soil, a rate of action of growth factors, etc. are present for the first time. These formulas allow studying many problems of soil management in certain hydro-temperature conditions and landscape. The samples of accounts due to the new methodology which showed good correspondence between test and theme data are presented.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chengwen Wang ◽  
Xiaoli Liu ◽  
Danqing Song ◽  
Enzhi Wang ◽  
Jianmin Zhang

In order to better understand the dynamic response and failure modes of rock slopes containing weak interlayers subjected to earthquake excitation, a series of numerical simulations were carried out using the continuum-discontinuum element method (CDEM), considering the influence of seismic amplitude and weak interlayers inclination. The seismic response characteristics of slopes were systematically analyzed according to the waveform characteristics, amplification effect, equivalent crack ratio, etc. The numerical results show that the acceleration waveform characteristics and peak ground displacement (PGD) amplification coefficient have good correspondence with the dynamic failure process of landslides. Comprehensive analysis of waveform characteristics and PGD amplification coefficient can determine the damage time, damage location, and damage degree of landslides. The landslide process can be divided into three stages according to the equivalent crack ratio: rapid generation of a large number of microcracks, expansion and aggregation of microcracks, and penetration of micro-cracks and the formation of slip surfaces. The equivalent crack ratio provides a new idea for evaluating slope stability. In addition, under the combination of different amplitudes and weak interlayers, these earthquake-induced landslides exhibit different failure modes: the failure of the gentle-dip slope is mainly local rockfall; The mid-dip and steep-dip slopes with small amplitudes experience “tensile cracking-slip-collapsing” failure; The steep-dip slopes under strong earthquake failed in the form of “tensile cracking-slip-slope extrusion-collapsing”. The research results are of great significance for a deeper understanding of the formation mechanism of rock landslides with weak interlayers and the prevention of such landslide disasters.


MAUSAM ◽  
2021 ◽  
Vol 49 (3) ◽  
pp. 383-386
Author(s):  
H. P. DAS ◽  
R. P. SAMUI ◽  
M. V. SATOSKAR

Groundnut, an important food legume, is extensively grown in semi-arid regions of India. Water use, water use efficiency and yield response of groundnut grown at three locations, viz., Bellary, Rahuri and Anand during kharif season have been studied for 3 to 5 years. Reduction in pod yield due to moisture stress was found greatest at Rahuri, where a relatively short duration crop was grown in a clayey soil. Total water use was highest at Anand, followed by Bellary and Rahuri. The water use was 660, 460 and 410 mm respectively. At all locations evapotranspiration by the crop was maximal at peg formation to pod development stage of crop growth. The water use efficiency was highest at Bellary followed by Anand and Rahuri. The relative evapotranspiration ratio ETc/ETo for the entire growing season was 0.97, 0.63 and 0.92 at Anand, Bellary and Rahuri respectively. Pod yield showed good correspondence with total water use.


MAUSAM ◽  
2021 ◽  
Vol 49 (1) ◽  
pp. 79-94
Author(s):  
K.R. SAHA ◽  
HUUG M. VAN DEN DOOL ◽  
SURANJANA SAHA

A 17 - year (1979-95) January and July climatology obtained from a T 62/ 28 -level version of the National Centers for Environmental Prediction (NCEP) global spectral operational model is compared with a mean observed climatology for the same period obtained from its reanalysis project, with a view to finding out how well it captures some of the well-thrown characteristics of the global monsoon circulation generated seasonally by differential heating of the earth's surface by the sun in the course of its annual oscillation about the equator. Good correspondence between the two is found in the fields of mean monthly anomaly (deviation of monthly mean from the annual mean) of surface temperature, surface pressure, atmospheric circulation and total rainfall over most parts of the globe, barring a few exceptions mostly in circulation and rainfall.   Large diversity in the distribution and intensity of monsoon found over different regions due to land-sea configurations, cold and warm ocean surfaces and high mountain ranges appears to be well reflected in model and observed climatology. However, the concept of a single equatorial trough moving from one hemisphere to the other to cause advance and onset of monsoon appears to fail especially over warm oceans, where there appears to be evidence in favour of two troughs, one in each hemisphere. It is the equatorial trough in the summer hemisphere that moves to bring up the monsoon in that hemisphere. There appears to be some evidence to suggest an east-west movement of monsoons between major continents and oceans.


Author(s):  
Geoff G Murphy ◽  
Robert M Yates ◽  
Shazrene S Mohamed

Abstract We present an analysis of the formation and chemical evolution of stellar haloes around (a) Milky Way Analogue (MWA) galaxies and (b) galaxy clusters in the L-Galaxies 2020 semi-analytic model of galaxy evolution. Observed stellar halo properties are better reproduced when assuming a gradual stripping model for the removal of cold gas and stars from satellites, compared to an instantaneous stripping model. The slope of the stellar mass – metallicity relation for MWA stellar haloes is in good agreement with that observed in the local Universe. This extends the good agreement between L-Galaxies 2020 and metallicity observations from the gas and stars inside galaxies to those outside. Halo stars contribute on average only ∼0.1 per cent of the total circumgalactic medium (CGM) enrichment by z = 0 in MWAs, ejecting predominantly carbon produced by AGB stars. Around a quarter of MWAs have a single ‘significant progenitor’ with a mean mass of ∼ 2.3 × 109M⊙, similar to that measured for Gaia Enceladus. For galaxy clusters, L-Galaxies 2020 shows good correspondence with observations of stellar halo mass fractions, but slightly over-predicts stellar masses. Assuming a Navarro-Frenk-White profile for the stellar halo mass distribution provides the best agreement. On average, the intracluster stellar component (ICS) is responsible for 5.4 per cent of the total intracluster medium (ICM) iron enrichment, exceeding the contribution from the brightest cluster galaxy (BCG) by z = 0. We find that considering gradual stripping of satellites and realistic radial profiles is crucial for accurately modelling stellar halo formation on all scales in semi-analytic models.


2021 ◽  
Vol 9 ◽  
Author(s):  
Andrew Rebeiro-Hargrave ◽  
Pak Lun Fung ◽  
Samu Varjonen ◽  
Andres Huertas ◽  
Salla Sillanpää ◽  
...  

Air pollution is a contributor to approximately one in every nine deaths annually. Air quality monitoring is being carried out extensively in urban environments. Currently, however, city air quality stations are expensive to maintain resulting in sparse coverage and data is not readily available to citizens. This can be resolved by city-wide participatory sensing of air quality fluctuations using low-cost sensors. We introduce new concepts for participatory sensing: a voluntary community-based monitoring data forum for stakeholders to manage air pollution interventions; an automated system (cyber-physical system) for monitoring outdoor air quality and indoor air quality; programmable platform for calibration and generating virtual sensors using data from low-cost sensors and city monitoring stations. To test our concepts, we developed a low-cost sensor to measure particulate matter (PM2.5), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) with GPS. We validated our approach in Helsinki, Finland, with participants carrying the sensor for 3 months during six data campaigns between 2019 and 2021. We demonstrate good correspondence between the calibrated low-cost sensor data and city’s monitoring station measurements. Data analysis of their personal exposure was made available to the participants and stored as historical data for later use. Combining the location of low cost sensor data with participants public profile, we generate proxy concentrations for black carbon and lung deposition of particles between districts, by age groups and by the weekday.


2021 ◽  
Vol 2131 (3) ◽  
pp. 032017
Author(s):  
A Samoshkin ◽  
V Tikhomirov

Abstract The article developed a mathematical model describing the deformation of reinforced concrete, taking into account its adhesion to reinforcement. The model consists of three layers: concrete, contact layer, reinforcement. The contact layer surrounding the reinforcement takes into account the complex deformation of the concrete when interacting with the profiled reinforcement. Arguments are presented for criteria that determine the transition of concrete, reinforcement and contact layer to limit states. A diagram of testing of reinforced concrete specimen has been proposed and a procedure for processing experimental data, which allow you to determine the bond parameters. Equations that bind the mechanical characteristics of the contact layer with two the bond parameters of concrete with reinforcement are obtained. The developed model was used in the numerical solution of the problem of static pull-out of reinforcement from concrete. The calculation of the finite element method showed a good correspondence with the experimental data, including during plastic deformation of the reinforcement. This shows the correctness of theoretical provisions and developed mathematical algorithms used to model the deformation of reinforced concrete.


Sign in / Sign up

Export Citation Format

Share Document