horizontal branch stars
Recently Published Documents


TOTAL DOCUMENTS

360
(FIVE YEARS 29)

H-INDEX

46
(FIVE YEARS 4)

2022 ◽  
Vol 924 (1) ◽  
pp. 23
Author(s):  
Wenbo Wu ◽  
Gang Zhao ◽  
Xiang-Xiang Xue ◽  
Sarah A. Bird ◽  
Chengqun Yang

Abstract We explore the contribution of the Gaia Sausage to the stellar halo of the Milky Way by making use of a Gaussian mixture model (GMM) and applying it to halo star samples of Large Sky Area Multi-Object Fiber Spectroscopic Telescope K giants, Sloan Extension for Galactic Understanding and Exploration K giants, and Sloan Digital Sky Survey blue horizontal branch stars. The GMM divides the stellar halo into two parts, of which one represents a more metal-rich and highly radially biased component associated with an ancient, head-on collision referred to as the Gaia Sausage, and the other one is a more metal-poor and isotropic halo. A symmetric bimodal Gaussian is used to describe the distribution of spherical velocity of the Gaia Sausage, and we find that the mean absolute radial velocity of the two lobes decreases with the Galactocentric radius. We find that the Gaia Sausage contributes about 41%–74% of the inner (Galactocentric radius r gc < 30 kpc) stellar halo. The fraction of stars of the Gaia Sausage starts to decline beyond r gc ∼ 25–30 kpc, and the outer halo is found to be significantly less influenced by the Gaia Sausage than the inner halo. After the removal of halo substructures found by integrals of motion, the contribution of the Gaia Sausage falls slightly within r gc ∼ 25 kpc but is still as high as 30%–63%. Finally, we select several possible Sausage-related substructures consisting of stars on highly eccentric orbits. The GMM/Sausage component agrees well with the selected substructure stars in their chemodynamical properties, which increases our confidence in the reliability of the GMM fits.


2021 ◽  
Vol 163 (1) ◽  
pp. 18
Author(s):  
P. S. Ferguson ◽  
N. Shipp ◽  
A. Drlica-Wagner ◽  
T. S. Li ◽  
W. Cerny ◽  
...  

Abstract We perform a detailed photometric and astrometric analysis of stars in the Jet stream using data from the first data release of the DECam Local Volume Exploration Survey DR1 and Gaia EDR3. We discover that the stream extends over ∼ 29° on the sky (increasing the known length by 18°), which is comparable to the kinematically cold Phoenix, ATLAS, and GD-1 streams. Using blue horizontal branch stars, we resolve a distance gradient along the Jet stream of 0.2 kpc deg−1, with distances ranging from D ⊙ ∼ 27–34 kpc. We use natural splines to simultaneously fit the stream track, width, and intensity to quantitatively characterize density variations in the Jet stream, including a large gap, and identify substructure off the main track of the stream. Furthermore, we report the first measurement of the proper motion of the Jet stream and find that it is well aligned with the stream track, suggesting the stream has likely not been significantly perturbed perpendicular to the line of sight. Finally, we fit the stream with a dynamical model and find that it is on a retrograde orbit, and is well fit by a gravitational potential including the Milky Way and Large Magellanic Cloud. These results indicate the Jet stream is an excellent candidate for future studies with deeper photometry, astrometry, and spectroscopy to study the potential of the Milky Way and probe perturbations from baryonic and dark matter substructure.


2021 ◽  
Vol 923 (2) ◽  
pp. 162
Author(s):  
Sharmila Rani ◽  
Gajendra Pandey ◽  
Annapurni Subramaniam ◽  
Chul Chung ◽  
Snehalata Sahu ◽  
...  

Abstract We present the far-UV (FUV) photometry of images acquired with UVIT on AstroSat to probe the horizontal branch (HB) population of the Galactic globular cluster NGC 2298. UV-optical color–magnitude diagrams (CMDs) are constructed for member stars in combination with Hubble Space Telescope UV Globular Cluster Survey data for the central region and Gaia and ground-based photometric data for the outer region. A blue HB (BHB) sequence with a spread and four hot HB stars are detected in all FUV-optical CMDs and are compared with theoretical updated BaSTI isochrones and synthetic HB models with a range in helium abundance, suggesting that the hot HB stars are helium enhanced when compared to the BHB. The estimated effective temperature, radius, and luminosity of HB stars, using the best spectral energy distribution fits, were compared with various HB models. BHB stars span a temperature range from 7500 to 12,250 K. Three hot HB stars have 35,000–40,000 K, whereas one star has around ∼100,000 K. We suggest the following evolutionary scenarios: two stars are likely to be the progeny of extreme HB (EHB) stars formed through an early hot-flasher scenario, one is likely to be an EHB star with probable helium enrichment, and the hottest HB star, which is about to enter the white dwarf cooling phase, could have evolved from the BHB phase. Nevertheless, these are interesting spectroscopic targets to understand the late stages of evolution.


2021 ◽  
Vol 923 (2) ◽  
pp. 218
Author(s):  
Carrie Filion ◽  
Rosemary F. G. Wyse

Abstract Establishing the spatial extents and the nature of the outer stellar populations of dwarf galaxies is necessary for the determination of their total masses, current dynamical states, and past evolution. We here describe our investigation of the outer stellar content of the Boötes I ultra-faint dwarf galaxy, a satellite of the the Milky Way. We identify candidate member blue horizontal branch and blue straggler stars of Boötes I, both tracers of the underlying ancient stellar population, using a combination of multiband Pan-STARRS photometry and Gaia astrometry. We find a total of twenty-four candidate blue horizontal branch member stars with apparent magnitudes and proper motions consistent with membership of Boötes I, nine of which reside at projected distances beyond the nominal King profile tidal radius derived from earlier fits to photometry. We also identify four blue straggler stars of appropriate apparent magnitude to be at the distance of Boötes I, but all four are too faint to have high-quality astrometry from Gaia. The outer blue horizontal branch stars that we have identified confirm that the spatial distribution of the stellar population of Boötes I is quite extended. The morphology on the sky of these outer envelope candidate member stars is evocative of tidal interactions, a possibility that we explore further with simple dynamical models.


2021 ◽  
Vol 923 (2) ◽  
pp. 166
Author(s):  
Zhi Li ◽  
Yan Li

Abstract To explore overshoot mixing beyond the convective core in core helium-burning stars, we use the k−ω model, which is incorporated into the Modules of Experiments in Stellar Astrophysics to investigate overshoot mixing in the evolution of subdwarf B (sdB) stars. Our results show that the development of the convective core can be divided into three stages. The mass of the convective core increases monotonically when the radiative temperature gradient, ∇rad, monotonically decreases outwardly, and overshoot mixing presents an exponential decay similar to Herwig. The splitting of the convective core occurs repeatedly when the minimum value of ∇rad near the convective boundary is smaller than the adiabatic temperature gradient, ∇ad. The mass at the outer boundary of the convective shell M sc can exceed 0.2 M ⊙ after the central helium abundance drops to about Y c ≈ 0.45. It is close to the convective core masses derived by asteroseismology for younger models (0.22 to ∼0.28 M ⊙). In the final stage, “core breathing pulses” occurred two or three times. Helium was injected into the convective core by overshoot mixing and increased the lifetime of sdB stars. The mass of the mixed region M mixed can rise to 0.303 M ⊙ by the end. The oxygen content in the central core of our g-mode sdB models is about 80% by mass. The high amounts of oxygen deduced from asteroseismology may be evidence supporting the existence of core breathing pulses.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Anton V. Sokolov ◽  
Andreas Ringwald

Abstract We propose a model for the QCD axion which is realized through a coupling of the Peccei-Quinn scalar field to magnetically charged fermions at high energies. We show that the axion of this model solves the strong CP problem and then integrate out heavy magnetic monopoles using the Schwinger proper time method. We find that the model discussed yields axion couplings to the Standard Model which are drastically different from the ones calculated within the KSVZ/DFSZ-type models, so that large part of the corresponding parameter space can be probed by various projected experiments. Moreover, the axion we introduce is consistent with the astrophysical hints suggested both by anomalous TeV-transparency of the Universe and by excessive cooling of horizontal branch stars in globular clusters. We argue that the leading term for the cosmic axion abundance is not changed compared to the conventional pre-inflationary QCD axion case for axion decay constant fa> 1012 GeV.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Peter Athron ◽  
Csaba Balázs ◽  
Ankit Beniwal ◽  
J. Eliel Camargo-Molina ◽  
Andrew Fowlie ◽  
...  

Abstract The excess of electron recoil events seen by the XENON1T experiment has been interpreted as a potential signal of axion-like particles (ALPs), either produced in the Sun, or constituting part of the dark matter halo of the Milky Way. It has also been explained as a consequence of trace amounts of tritium in the experiment. We consider the evidence for the solar and dark-matter ALP hypotheses from the combination of XENON1T data and multiple astrophysical probes, including horizontal branch stars, red giants, and white dwarfs. We briefly address the influence of ALP decays and supernova cooling. While the different datasets are in clear tension for the case of solar ALPs, all measurements can be simultaneously accommodated for the case of a sub-dominant fraction of dark-matter ALPs. Nevertheless, this solution requires the tuning of several a priori unknown parameters, such that for our choices of priors a Bayesian analysis shows no strong preference for the ALP interpretation of the XENON1T excess over the background hypothesis.


Author(s):  
Carolina Montecinos ◽  
S Villanova ◽  
C Muñoz ◽  
C C Cortés

Abstract Globular Clusters are among the oldest objects in the Galaxy, thus their researchers are key to understanding the processes of evolution and formation that the galaxy has experienced in early stages. Spectroscopic studies allow us to carry out detailed analyzes on the chemical composition of Globular Clusters. The aim of our research is to perform a detailed analysis of chemical abundances to a sample of stars of the Bulge Globular Cluster NGC 6553, in order to determine chemical patterns that allow us to appreciate the phenomenon of Multiple Population in one of the most metal-rich Globular Clusters in the Galaxy. This analysis is being carried out with data obtained by FLAMES/GIRAFFE spectrograph, VVV Survey and DR2 of Gaia Mission. We analyzed 20 Red Horizontal Branch Stars, being the first extensive spectroscopic abundance analysis for this cluster and measured 8 chemical elements (O, Na, Mg, Si, Ca, Ti, Cr and Ni), deriving a mean iron content of [Fe/H] = −0.10 ± 0.01 and a mean of [α/Fe] = 0.21 ± 0.02, considering Mg, Si, Ca and Ti (errors on the mean). We found a significant spread in the content of Na but a small or negligible in O. We did not find an intrinsic variation in the content of α and iron-peak elements, showing a good agreement with the trend of the Bulge field stars, suggesting a similar origin and evolution.


Sign in / Sign up

Export Citation Format

Share Document