underwater landslides
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 7)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Davide Gamboa ◽  
Rachid Omira ◽  
Pedro Terrinha

AbstractSubmarine landslides are major geohazards occurring on distinct seabed domains ranging from shallow coastal areas to the deeper points of the ocean. The nature and relief of the seabed are key factors influencing the location and size of submarine landslides. Efforts have recently been made to compile databases of submarine landslide distribution and morphometry, a crucial task to assess submarine geohazards. The MAGICLAND (Marine Geo-hazards Induced by underwater Landslides in the SW Iberian Margin) database here presented contributed to that assessment offshore Portugal. Based on EMODnet bathymetric DEMs and GIS analysis, the morphometric properties of 1552 submarine landslides were analysed and wealth of 40 parameters was obtained. This dataset is now made available for the free use and benefit of the international marine community. Further contributions or analysis based on, and complementing the MAGICLAND database will be welcome.



2021 ◽  
Author(s):  
Inês Ramalho ◽  
Rachid Omira ◽  
Aldina Piedade ◽  
Davide Gamboa ◽  
José Grazina ◽  
...  

<p>Slope instability is probably the most effective process shaping the seafloor of continental margins. This process often leads to the occurrence of submarine mass failures that, if large enough, can cause potential tsunamis. Yet, the dynamics of the landslide evacuated material and their induced tsunamigenic potential remain largely uncharacterized in most continental margins. This applies to the SW Iberia Margin, where large underwater landslide episodes have been evidenced.</p><p>In this work, we investigate the sensitivity of landslide-generated tsunami to the physical properties of marine sediments involved in the slope failures in the SW Iberia Margin. This includes the landslide dynamics, the tsunamigenic potential and the tsunami hazard extent. Based upon the MAGICLAND (Marine Geo-hazards Induced by Underwater Landslides in the SW Iberian Margin) project database, we select promising sizable submarine landslide scenarios. We then use an in-house developed two-layer numerical code (based on a Bingham visco-plastic model for the landslide and a non-linear shallow water model for the tsunami) to simulate both the landslide dynamics and the induced tsunami generation and propagation.</p><p>In a first stage, the numerical simulations are done considering uncertain sediments properties deduced from the literature. Next, we perform numerical simulations of the selected landslide scenarios using accurate geotechnical properties (mainly the in-situ shear strength obtained from undisturbed samples) determined by laboratory tests conducted on from the analysis of available marine gravity cores in the SW Iberian Margin. Results show that the geotechnical parameters significatively influence the simulation results of both the landslide dynamics and induced tsunami. Particularly, we noticed major effects on the landslide downslope deformation, failure speed, deposited thickness and run-out, which considerably control the momentum transferred to the generated tsunami wave. This demonstrates that the use of inappropriate material properties leads to a misquantification of landslide tsunamigenesis and hazard extent.</p><p>This work was financed by national funds through FCT—Portuguese Foundation for Science and Technology, I.P., under the framework of the project MAGICLAND – Marine Geo-hazards Induced by Underwater Landslides in the SW Iberian Margin (PTDC/ CTA-GEO/30381/2017).</p>



2021 ◽  
Author(s):  
Rachid Omira ◽  
Davide Gamboa ◽  
Pedro Terrinha

<p>Submarine landslides are major geohazards occurring on distinct seabed domains ranging from shallow coastal areas to the deeper points of the ocean. The nature and relief of the seabed are key factors influencing the location and size of submarine landslides. Mass-failures on the continental slopes are frequent, but collapses on and along chains of oceanic seamounts and ridges can account also for a high frequency of events. Regardless of their area of occurrence, submarine landslides are a major hazard that needs to be recognised and categorised. For this purpose, numerous efforts have been made to compile databases of submarine landslides with the aim to better understand their distribution and characteristics on marine settings around the world.</p><p>This work presents the initial efforts of the MAGICLAND (Marine Geo-hazards Induced by underwater Landslides in the SW Iberian Margin) database which, based on bathymetric DEMs available through EmodNET, compiled geomorphological properties of 1552 morphological scars and submarine landslides offshore West and Southwest Portugal. These are distributed through seven morphological domains: 1) canyons incising the continental slope (232 landslide episodes); 2) continental slope (233 landslide episodes); 3) large seamounts (437 landslide episodes); 4) submarine ridges and small seamounts (263 landslide episodes); 5) Gulf of Cadiz (226 landslide episodes); 6) Gulf of Cadiz banks and channels (123 landslide episodes); and 7) Estremadura Spur (38 landslide episodes). A wealth of 43 parameters were measured or calculated, which include a subset of morphological quantifications for the evacuation and deposit sections for 347 occurrences where the latter was observed. We present the morphological data and any derived computations as measured on the 3D surface in order to increase their accuracy and mitigate the effect of slope gradient on map-based 2D analysis. The larger events were recorded on the large seamounts and the ridges domains, which also correspond to the larger recorded landslide heights (measured as the difference between minimum and maximum depths). Good correlations (coefficient of determination R<sup>2</sup>>0.8) where obtained for Area-Volume, Width-Area, and Length-Area relationships. Where evacuation and deposit sections were discernible, their area relationships present a better correlation compared to their lengths.</p><p>Further stages of the database development will involve the addition of still unmapped scars, as well as further statistical analysis and integration with available geophysical and geotechnical datasets for the areas of study. This dataset will be made available for the free use and benefit of the international marine community. Further contributions or analysis based on, and complementing the MAGICLAND database will be welcome.</p><p>This work is supported by the FCT funded project MAGICLAND - MArine Geo-hazards InduCed by underwater LANDslides in the SW Iberian Margin (Ref: PTDC/CTA-GEO/30381/2017).</p>



Geoscientist ◽  
2020 ◽  
Vol 30 (9) ◽  
pp. 16-19


Author(s):  
Olga N. Zlobina ◽  
◽  
Tatyana Yu. Karamysheva ◽  

It has been established that the Nizhnexetskaya and Sukhodudinskaya (lower part) formations, and probably, the underlying deposits - Golchihinskaya (upper part) and Yanovstanskaya (roof), represent the clinoform complex. The article presents the argument that the tectonic factor in the formation of clinoforms was the main. The largest amount of debris material moved in this geodynamically active zone due to seismic disturbances that generate earthquakes, tsunamis and associated underwater landslides and turbidite flows, which as a result formed wedge-shaped bodies.



2020 ◽  
Author(s):  
Aldina Piedade ◽  
Nicole Santos ◽  
Luís Lemos ◽  
Cristina Roque ◽  
Mário Quinta-Ferreira ◽  
...  

<p>Submarine mass-failures are recognized worldwide as a potential source of marine geo-hazards. They can compromise the safety and integrity of seafloor and subsurface infrastructures through destroying offshore installations or triggering potential tsunamis. This applies to the SW Iberia Margin, where the occurrence of damaging and tsunamigenic underwater landslides were evidenced in various research works.</p><p>This work assesses the geotechnical properties of the marine sediments forming the slopes of the SW Iberia Margin and provides implications to the marine geohazard in the region. Taking advantage of the availability of the cores from previous projects and expeditions (i.e. CONDRIBER, and IODP Expedition-339), we perform conventional Triaxial laboratory tests. These tests allow determining the in-situ shear strength and stress deformation properties, pre-and post-rupture of the undisturbed sediments.</p><p>Furthermore, we present, through a landslide case-study in the SW Iberia Margin, a sensitivity analysis of the marine geohazards (sliding mass drag forces and tsunamigenesis) to the geotechnical properties of the marine sediments. We demonstrate that the geotechnical analysis is crucial for an accurate modelling of the submarine mass movements, their impact on offshore installations, and their induced tsunamis.</p><p>This work was financed by national funds through FCT—Portuguese Foundation for Science and Technology, I.P., under the framework of the project MAGICLAND – Marine Geo-hazards Induced by Underwater Landslides in the SW Iberian Margin (PTDC/ CTA-GEO/30381/2017).</p>



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Noel Brizuela ◽  
Anatoliy Filonov ◽  
Matthew H. Alford


Nature ◽  
2018 ◽  
Vol 555 (7694) ◽  
pp. 8-9


Sign in / Sign up

Export Citation Format

Share Document