The MAGICLAND (Marine Geohazards InduCed by LANDslides) database: Early results on submarine landslide distribution and morphometrics offshore Portugal 

Author(s):  
Rachid Omira ◽  
Davide Gamboa ◽  
Pedro Terrinha

<p>Submarine landslides are major geohazards occurring on distinct seabed domains ranging from shallow coastal areas to the deeper points of the ocean. The nature and relief of the seabed are key factors influencing the location and size of submarine landslides. Mass-failures on the continental slopes are frequent, but collapses on and along chains of oceanic seamounts and ridges can account also for a high frequency of events. Regardless of their area of occurrence, submarine landslides are a major hazard that needs to be recognised and categorised. For this purpose, numerous efforts have been made to compile databases of submarine landslides with the aim to better understand their distribution and characteristics on marine settings around the world.</p><p>This work presents the initial efforts of the MAGICLAND (Marine Geo-hazards Induced by underwater Landslides in the SW Iberian Margin) database which, based on bathymetric DEMs available through EmodNET, compiled geomorphological properties of 1552 morphological scars and submarine landslides offshore West and Southwest Portugal. These are distributed through seven morphological domains: 1) canyons incising the continental slope (232 landslide episodes); 2) continental slope (233 landslide episodes); 3) large seamounts (437 landslide episodes); 4) submarine ridges and small seamounts (263 landslide episodes); 5) Gulf of Cadiz (226 landslide episodes); 6) Gulf of Cadiz banks and channels (123 landslide episodes); and 7) Estremadura Spur (38 landslide episodes). A wealth of 43 parameters were measured or calculated, which include a subset of morphological quantifications for the evacuation and deposit sections for 347 occurrences where the latter was observed. We present the morphological data and any derived computations as measured on the 3D surface in order to increase their accuracy and mitigate the effect of slope gradient on map-based 2D analysis. The larger events were recorded on the large seamounts and the ridges domains, which also correspond to the larger recorded landslide heights (measured as the difference between minimum and maximum depths). Good correlations (coefficient of determination R<sup>2</sup>>0.8) where obtained for Area-Volume, Width-Area, and Length-Area relationships. Where evacuation and deposit sections were discernible, their area relationships present a better correlation compared to their lengths.</p><p>Further stages of the database development will involve the addition of still unmapped scars, as well as further statistical analysis and integration with available geophysical and geotechnical datasets for the areas of study. This dataset will be made available for the free use and benefit of the international marine community. Further contributions or analysis based on, and complementing the MAGICLAND database will be welcome.</p><p>This work is supported by the FCT funded project MAGICLAND - MArine Geo-hazards InduCed by underwater LANDslides in the SW Iberian Margin (Ref: PTDC/CTA-GEO/30381/2017).</p>

2020 ◽  
Author(s):  
Davide Mencaroni ◽  
Roger Urgeles ◽  
Jonathan Ford ◽  
Jaume Llopart ◽  
Cristina Sànchez Serra ◽  
...  

<p>Contourite deposits are generated by the interplay between deepwater bottom-currents, sediment supply and seafloor topography. The Gulf of Cadiz, in the Southwest Iberian margin, is a famous example of extensive contourite deposition driven by the Mediterranean Outflow Water (MOW), which exits the Strait of Gibraltar, flows northward following the coastline and distributes the sediments coming from the Guadalquivir and Guadiana rivers. The MOW and related contourite deposits affect the stability of the SW Iberian margin in several ways: on one hand it increases the sedimentation rate, favoring the development of excess pore pressure, while on the other hand, by depositing sand it allows pore water pressure to dissipate, potentially increasing the stability of the slope.</p><p>In the Gulf of Cadiz, grain size distribution of contourite deposits is influenced by the seafloor morphology, which splits the MOW in different branches, and by the alternation of glacial and interglacial periods that affected the MOW hydrodynamic regimes. Fine clay packages alternates with clean sand formations according to the capacity of transport of the bottom-current in a specific area. Generally speaking, coarser deposits are found in the areas of higher MOW flow energy, such as in the shallower part of the slope or in the area closer to the Strait of Gibraltar, while at higher water depths the sedimentation shifts to progressively finer grain sizes as the MOW gets weaker. Previous works show that at present-day the MOW flows at a maximum depth of 1400 m, while during glacial periods the bottom-current could have reached higher depths.</p><p>In this study we derived the different maximum depths at which the MOW flowed by analyzing the distribution of sands at different depths along the Alentejo basin slope, in the Northern sector of the Gulf of Cadiz.</p><p>Here we show how changes in sand distribution along slope, within the stratigraphic units deposited between the Neogene and the present day, are driven by glacial – interglacial period alternation that influenced the hydrodynamic regime of the MOW.</p><p>By deriving the depositional history of sand in the Alentejo basin, we are able to correlate directly the influence that climatic cycles had on the MOW activity. Furthermore, by interpreting new multi-channel seismic profiles we have been able to derive a detailed facies characterization of the uppermost part of the Gulf of Cadiz.</p><p>An accurate definition of sand distribution along slope plays an important role in evaluating the stability of the slope itself, e.g. to understand if the sediments may be subjected to excess pore pressure generation. As sand distribution is a direct function of the bottom-current transport capacity, the ultimate goal of this study is to understand how climate variations can affect the stability of submarine slope by depositing contourite-related sand.</p>


2020 ◽  
Vol 427 ◽  
pp. 106214 ◽  
Author(s):  
Thomas Mestdagh ◽  
Francisco J. Lobo ◽  
Estefanía Llave ◽  
F. Javier Hernández-Molina ◽  
Antonio García Ledesma ◽  
...  

Terra Nova ◽  
2003 ◽  
Vol 15 (6) ◽  
pp. 380-391 ◽  
Author(s):  
Adolfo Maestro ◽  
Luis Somoza ◽  
Teresa Medialdea ◽  
Christopher J. Talbot ◽  
Allen Lowrie ◽  
...  

2016 ◽  
Vol 378 ◽  
pp. 196-212 ◽  
Author(s):  
Desirée Palomino ◽  
Nieves López-González ◽  
Juan-Tomás Vázquez ◽  
Luis-Miguel Fernández-Salas ◽  
José-Luis Rueda ◽  
...  

Tectonics ◽  
2003 ◽  
Vol 22 (4) ◽  
pp. n/a-n/a ◽  
Author(s):  
Eulàlia Gràcia ◽  
Juanjo Dañobeitia ◽  
Jaume Vergés ◽  
Rafael Bartolomé ◽  
Diego Córdoba

Sign in / Sign up

Export Citation Format

Share Document