var genes
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 7)

H-INDEX

32
(FIVE YEARS 1)

2020 ◽  
Author(s):  
Eliana Cubillos ◽  
Isadora Prata ◽  
Wesley Fotoran ◽  
Nicolas Cardenas ◽  
Diego Alonso ◽  
...  

Abstract The human malaria parasite Plasmodium falciparum expresses variant PfEMP1 proteins on the infected erythrocyte, which function as ligands for endothelial receptors in capillary vessels, leading to erythrocyte sequestration and severe malaria. The factors that orchestrate the mono-allelic expression of the 50-60 PfEMP1-encoding var genes within each parasite genome are still not fully identified. Here, we show that the transcription factor PfAP2-O influences the transcription of var genes and other multigenic families. The temporary knockdown of PfAP2-O leads to a complete loss of var transcriptional memory and a decrease in cytoadherence. AP2-O-knocked down parasites exhibited also significant reductions in transmission through Anopheles mosquitoes. We propose that PfAP2-O is one of the major virulence gene transcriptional regulators and may, therefore, be exploited as an important target to disrupt severe malaria and block parasite transmission.


2020 ◽  
Author(s):  
Hunter L. Gage ◽  
Catherine J. Merrick

Abstract Background : The Plasmodium genus of malaria parasites encodes several families of antigen-encoding genes. These genes tend to be hyper-variable, highly recombinogenic and variantly expressed. The best-characterized family is the var genes, exclusively found in the Laveranian subgenus of malaria parasites infecting humans and great apes. Var genes encode major virulence factors involved in immune evasion and the maintenance of chronic infections. In the human parasite P. falciparum , var gene recombination and diversification appear to be promoted by G-quadruplex (G4) DNA motifs, which are strongly associated with var genes in P. falciparum . Here, we investigated how this association might have evolved across Plasmodium species – both Laverania and also more distantly related species which lack var s but encode other, more ancient variant gene families. Results : The association between var genes and G4-forming motifs was conserved across Laverania, spanning ~1 million years of evolutionary time, with suggestive evidence for evolution of the association occurring within this subgenus. In rodent malaria species, G4-forming motifs were somewhat associated with pir genes, but this was not conserved in the Laverania, nor did we find a strong association of these motifs with any gene family in a second outgroup of avian malaria parasites. Secondly, we compared two different G4 prediction algorithms in their performance on extremely A/T-rich Plasmodium genomes, and also compared these predictions with experimental data from G4-seq, a DNA sequencing method for identifying G4-forming motifs. We found a surprising lack of concordance between the two algorithms and also between the algorithms and G4-seq data. Conclusions: G4-forming motifs are uniquely strongly associated with Plasmodium var genes, suggesting a particular role for G4s in recombination and diversification of these genes. Secondly, in the A/T-rich genomes of Plasmodium species, the choice of prediction algorithm may be particularly influential when studying G4s in these important protozoan pathogens.


2020 ◽  
Author(s):  
Hunter L. Gage ◽  
Catherine J. Merrick

Abstract Background: The Plasmodium genus of malaria parasites encodes several families of antigen-encoding genes. These genes tend to be hyper-variable, highly recombinogenic and variantly expressed. The best-characterized family is the var genes, exclusively found in the Laveranian subgenus of malaria parasites infecting humans and great apes. Var genes encode major virulence factors involved in immune evasion and the maintenance of chronic infections. In the human parasite P. falciparum, var gene recombination and diversification appear to be promoted by G-quadruplex (G4) DNA motifs, which are strongly associated with var genes in P. falciparum. Here, we investigated how this association might have evolved across Plasmodium species – both Laverania and also more distantly related species which lack vars but encode other, more ancient variant gene families. Results: The association between var genes and G4-forming motifs was conserved across Laverania, spanning ~1 million years of evolutionary time, with suggestive evidence for evolution of the association occurring within this subgenus. In rodent malaria species, G4-forming motifs were somewhat associated with pir genes, but this was not conserved in the Laverania, nor did we find a strong association of these motifs with any gene family in a second outgroup of avian malaria parasites. Secondly, we compared two different G4 prediction algorithms in their performance on extremely A/T-rich Plasmodium genomes, and also compared these predictions with experimental data from G4-seq, a DNA sequencing method for identifying G4-forming motifs. We found a surprising lack of concordance between the two algorithms and also between the algorithms and G4-seq data. Conclusions: G4-forming motifs are uniquely strongly associated with Plasmodium var genes, suggesting a particular role for G4s in recombination and diversification of these genes. Secondly, in the A/T-rich genomes of Plasmodium species, the choice of prediction algorithm may be particularly influential when studying G4s in these important protozoan pathogens.


2020 ◽  
Vol 8 (2) ◽  
pp. 174 ◽  
Author(s):  
Michael Dörpinghaus ◽  
Finn Fürstenwerth ◽  
Lisa K. Roth ◽  
Philip Bouws ◽  
Maximilian Rakotonirinalalao ◽  
...  

Changes in the erythrocyte membrane induced by Plasmodium falciparum invasion allow cytoadhesion of infected erythrocytes (IEs) to the host endothelium, which can lead to severe complications. Binding to endothelial cell receptors (ECRs) is mainly mediated by members of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family, encoded by var genes. Malaria infection causes several common symptoms, with fever being the most apparent. In this study, the effects of febrile conditions on cytoadhesion of predominately knobless erythrocytes infected with the laboratory isolate IT4 to chondroitin-4-sulfate A (CSA), intercellular adhesion molecule 1 (ICAM-1), and CD36 were investigated. IEs enriched for binding to CSA at 40 °C exhibited significantly increased binding capacity relative to parasites enriched at 37 °C. This interaction was due to increased var2csa expression and trafficking of the corresponding PfEMP1 to the IE surface as well as to a selection of knobby IEs. Furthermore, the enrichment of IEs to ICAM-1 at 40 °C also led to selection of knobby IEs over knobless IEs, whereas enrichment on CD36 did not lead to a selection. In summary, these findings demonstrate that knobs are crucial for parasitic survival in the host, especially during fever episodes, and thus, that selection pressure on the formation of knobs could be controlled by the host.


2019 ◽  
Author(s):  
Hunter L. Gage ◽  
Catherine J. Merrick

Abstract Background: The Plasmodium genus of malaria parasites encodes several families of antigen-encoding genes. These genes tend to be hyper-variable, highly recombinogenic and variantly expressed. The best-characterized family is the var genes, exclusively found in the Laveranian subgenus of malaria parasites infecting humans and great apes. Var genes encode major virulence factors involved in immune evasion and the maintenance of chronic infections. In the human parasite P. falciparum, var gene recombination and diversification appear to be promoted by G-quadruplex (G4) DNA motifs, which are strongly associated with var genes in P. falciparum. Here, we investigated how this association might have evolved across Plasmodium species – both Laverania and also more distantly related species which lack vars but encode other, more ancient variant gene families. Results: The association between var genes and G4-forming motifs was conserved across Laverania, spanning ~1 million years of evolutionary time, with suggestive evidence for evolution of the association occurring within this subgenus. In rodent malaria species, G4-forming motifs were somewhat associated with pir genes, but this was not conserved in the Laverania, nor did we find a strong association of these motifs with any gene family in a second outgroup of avian malaria parasites. Secondly, we compared two different G4 prediction algorithms in their performance on extremely A/T-rich Plasmodium genomes, and also compared these predictions with experimental data from G4-seq, a DNA sequencing method for identifying G4-forming motifs. We found a surprising lack of concordance between the two algorithms and also between the algorithms and G4-seq data. Conclusions: G4-forming motifs are uniquely strongly associated with Plasmodium var genes, suggesting a particular role for G4s in recombination and diversification of these genes. Secondly, in the A/T-rich genomes of Plasmodium species, the choice of prediction algorithm may be particularly influential when studying G4s in these important protozoan pathogens.


2019 ◽  
Vol 11 (3) ◽  
Author(s):  
Hannah Fleckenstein ◽  
Silvia Portugal
Keyword(s):  

PLoS Biology ◽  
2018 ◽  
Vol 16 (3) ◽  
pp. e2004328 ◽  
Author(s):  
Gerry Q. Tonkin-Hill ◽  
Leily Trianty ◽  
Rintis Noviyanti ◽  
Hanh H. T. Nguyen ◽  
Boni F. Sebayang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document