signal divergence
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 8)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Lauren Lanahan ◽  
Daniel Erian Armanios ◽  
Amol M. Joshi

Prevailing theory argues that more certifications increase performance. However, emerging empirical evidence implies that obtaining more certifications may actually decrease performance. How do we reconcile this tension? Practically speaking, why would ventures seek additional certifications in light of these recently identified risks? To address this gap between existing theory and recent empirics, we look more closely at ventures’ activities and performance outcomes after they receive their first certification. We posit that different patterns of certification reflect different forms of experimentation. In particular, ventures may be willing to experiment in ways that incur an inappropriateness penalty for the chance to gain a subsequent desirability premium if their experiments succeed. Inappropriateness means that certifications signal divergence from accepted market norms and standards. Desirability means that certifications signal activities that are in the perceived self-interest of the potential audience. We hypothesize that certifications reflecting broad experimentation incur initial inappropriateness penalties, yet when successful, they are more likely to lead to breakthroughs that generate desirability premia. We find support for this idea through an empirical analysis drawing from a sample of 7,440 U.S. ventures that receive one or more Small Business Innovation Research (SBIR) or Small Business Technology Transfer (STTR) grants to commercialize new technologies. This study advances institutional theory of certification to better account not only for its benefits but also for its costs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Bian ◽  
Angela Pinilla ◽  
Tom Chandler ◽  
Richard Peters

AbstractHabitat-specific characteristics can affect signal transmission such that different habitats dictate the optimal signal. One way to examine how the environment influences signals is by comparing changes in signal effectiveness in different habitats. Examinations of signal effectiveness between different habitats has helped to explain signal divergence/convergence between populations and species using acoustic and colour signals. Although previous research has provided evidence for local adaptations and signal divergence in many species of lizards, comparative studies in movement-based signals are rare due to technical difficulties in quantifying movements in nature and ethical restrictions in translocating animals between habitats. We demonstrate herein that these issues can be addressed using 3D animations, and compared the relative performance of the displays of four Australian lizard species in the habitats of each species under varying environmental conditions. Our simulations show that habitats differentially affect signal performance, and an interaction between display and habitat structure. Interestingly, our results are consistent with the hypothesis that the signal adapted to the noisier environment does not show an advantage in signal effectiveness, but the noisy habitat was detrimental to the performance of all displays. Our study is one of the first studies for movement-based signals that directly compares signal performance in multiple habitats, and our approach has laid the foundation for future investigations in motion ecology that have been intractable to conventional research methods.


2021 ◽  
Vol 288 (1942) ◽  
pp. 20202804
Author(s):  
Richard K. Simpson ◽  
David R. Wilson ◽  
Allison F. Mistakidis ◽  
Daniel J. Mennill ◽  
Stéphanie M. Doucet

Closely related species often exhibit similarities in appearance and behaviour, yet when related species exist in sympatry, signals may diverge to enhance species recognition. Prior comparative studies provided mixed support for this hypothesis, but the relationship between sympatry and signal divergence is likely nonlinear. Constraints on signal diversity may limit signal divergence, especially when large numbers of species are sympatric. We tested the effect of sympatric overlap on plumage colour and song divergence in wood-warblers (Parulidae), a speciose group with diverse visual and vocal signals. We also tested how number of sympatric species influences signal divergence. Allopatric species pairs had overall greater plumage and song divergence compared to sympatric species pairs. However, among sympatric species pairs, plumage divergence positively related to the degree of sympatric overlap in males and females, while male song bandwidth and syllable rate divergence negatively related to sympatric overlap. In addition, as the number of species in sympatry increased, average signal divergence among sympatric species decreased, which is likely due to constraints on warbler perceptual space and signal diversity. Our findings reveal that sympatry influences signal evolution in warblers, though not always as predicted, and that number of sympatric species can limit sympatry's influence on signal evolution.


2020 ◽  
Author(s):  
Xue Bian ◽  
Angela Pinilla ◽  
Tom Chandler ◽  
Richard Peters

Abstract Habitat-specific characteristics can affect signal transmission such that different habitats dictate the optimal signal. One way to examine how the environment influences signals is by comparing changes in signal efficacy in different habitats. Examinations of signal efficacy between different habitats has helped to explain signal divergence/convergence between populations and species utilising acoustic and colour signals. Although previous research has provided evidence for local adaptations and signal divergence in many species of lizards, comparative studies in movement-based signals are rare due to technical difficulties in quantifying movements in nature and ethical restrictions in translocating animals between habitats. We demonstrate herein that these issues can be addressed using 3D animations, and compared the relative performance of the displays of four Australian lizard species in the habitats of each species under varying environmental conditions. Our simulations show that habitats differentially affect signal performance, and an interaction between display and habitat structure. Interestingly, the signal adapted to the noisier environment did not show an advantage in signal efficacy, but the noisy habitat was detrimental to the performance of all displays. Our study is one of the first studies for movement-based signals that directly compares signal performance in multiple habitats, and our approach has laid the foundation for future investigations in motion ecology that have been intractable to conventional research methods.


2020 ◽  
Vol 74 (12) ◽  
Author(s):  
Ernesto Raya-García ◽  
Ireri Suazo-Ortuño ◽  
Jesús Campos-García ◽  
José Martín ◽  
Javier Alvarado-Díaz ◽  
...  

2019 ◽  
Vol 286 (1912) ◽  
pp. 20191479 ◽  
Author(s):  
Thomas Blankers ◽  
Kevin P. Oh ◽  
Kerry L. Shaw

When the same phenotype evolves repeatedly, we can explore the predictability of genetic changes underlying phenotypic evolution. Theory suggests that genetic parallelism is less likely when phenotypic changes are governed by many small-effect loci compared to few of major effect, because different combinations of genetic changes can result in the same quantitative outcome. However, some genetic trajectories might be favoured over others, making a shared genetic basis to repeated polygenic evolution more likely. To examine this, we studied the genetics of parallel male mating song evolution in the Hawaiian cricket Laupala . We compared quantitative trait loci (QTL) underlying song divergence in three species pairs varying in phenotypic distance. We tested whether replicated song divergence between species involves the same QTL and whether the likelihood of QTL sharing is related to QTL effect size. Contrary to theoretical predictions, we find substantial parallelism in polygenic genetic architectures underlying repeated song divergence. QTL overlapped more frequently than expected based on simulated QTL analyses. Interestingly, QTL effect size did not predict QTL sharing, but did correlate with magnitude of phenotypic divergence. We highlight potential mechanisms driving these constraints on cricket song evolution and discuss a scenario that consolidates empirical quantitative genetic observations with micro-mutational theory.


2019 ◽  
Author(s):  
Thomas Blankers ◽  
Kevin P. Oh ◽  
Kerry L. Shaw

ABSTRACTWhen the same phenotype evolves repeatedly, we can explore the predictability of genetic changes underlying phenotypic evolution. Theory suggests that genetic parallelism is less likely when phenotypic changes are governed by many small-effect loci compared to few of major effect, because different combinations of genetic changes can result in the same quantitative outcome. However, some genetic trajectories might be favored over others, making a shared genetic basis to repeated polygenic evolution more likely. To examine this, we studied the genetics of parallel male mating song evolution in the Hawaiian cricket Laupala. We compared quantitative trait loci (QTL) underlying song divergence in three species pairs varying in phenotypic distance. We tested whether replicated song divergence between species involves the same QTL and the likelihood that sharing QTL is related to phenotypic effect sizes. Contrary to theoretical predictions, we find substantial parallelism in polygenic genetic architectures underlying repeated song divergence. QTL overlapped more than expected based on simulated QTL analyses. Interestingly, QTL effect size did not predict QTL sharing, but did correlate with magnitude of phenotypic divergence. We highlight potential mechanisms driving these constraints on cricket song evolution and discuss a scenario that consolidates empirical quantitative genetic observations with micro-mutational theory.


Sign in / Sign up

Export Citation Format

Share Document