phenotypic effect
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 88)

H-INDEX

30
(FIVE YEARS 3)

Author(s):  
Kate F. Kernan ◽  
Lina Ghaloul-Gonzalez ◽  
Jerry Vockley ◽  
Janette Lamb ◽  
Deborah Hollingshead ◽  
...  

Abstract   Purpose Our understanding of inborn errors of immunity is increasing; however, their contribution to pediatric sepsis is unknown. Methods We used whole-exome sequencing (WES) to characterize variants in genes related to monogenic immunologic disorders in 330 children admitted to intensive care for severe sepsis. We defined candidate variants as rare variants classified as pathogenic or potentially pathogenic in QIAGEN’s Human Gene Mutation Database or novel null variants in a disease-consistent inheritance pattern. We investigated variant correlation with infection and inflammatory phenotype. Results More than one in two children overall and three of four African American children had immunodeficiency-associated variants. Children with variants had increased odds of isolating a blood or urinary pathogen (blood: OR 2.82, 95% CI: 1.12–7.10, p = 0.023, urine: OR: 8.23, 95% CI: 1.06–64.11, p = 0.016) and demonstrating increased inflammation with hyperferritinemia (ferritin $$\ge 500$$ ≥ 500 ng/mL, OR: 2.16, 95% CI: 1.28–3.66, p = 0.004), lymphopenia (lymphocyte count < 1000/µL, OR: 1.66, 95% CI: 1.06 – 2.60, p = 0.027), thrombocytopenia (platelet count < 150,000/µL, OR: 1.76, 95% CI: 1.12–2.76, p = 0.013), and CRP greater than 10 mg/dl (OR: 1.71, 95% CI: 1.10–2.68, p = 0.017). They also had increased odds of requiring extracorporeal membrane oxygenation (ECMO, OR: 4.19, 95% CI: 1.21–14.5, p = 0.019). Conclusion Herein, we describe the genetic findings in this severe pediatric sepsis cohort and their microbiologic and immunologic significance, providing evidence for the phenotypic effect of these variants and rationale for screening children with life-threatening infections for potential inborn errors of immunity.


2021 ◽  
Author(s):  
Rebecca Kingdom ◽  
Marcus A Tuke ◽  
Andrew R Wood ◽  
Robin N Beaumont ◽  
Timothy R Frayling ◽  
...  

Many rare diseases are known to be caused by deleterious variants in Mendelian genes, however the same variants can also be found in people without the associated clinical phenotypes. The penetrance of these monogenic variants is generally unknown in the wider population, as they are typically identified in small clinical cohorts of affected individuals and families with highly penetrant variants. Here, we investigated the phenotypic effect of rare, potentially deleterious variants in genes and loci that are known to cause monogenic developmental disorders (DD) in a large population cohort. We used UK Biobank to investigate phenotypes associated with rare protein-truncating and missense variants in 599 dominant DD genes using whole exome sequencing data from ~200,000 individuals, and rare copy number variants overlapping known DD loci using SNP-array data from ~500,000 individuals. We found that individuals with these likely deleterious variants had a mild DD-related phenotype, including lower fluid intelligence, slower reaction times, lower numeric memory scores and longer pairs matching times compared to the rest of the UK Biobank cohort. They were also shorter, with a higher BMI and had significant socioeconomic disadvantages, being less likely to be employed or be able to work, and having a lower income and higher deprivation index. Our findings suggest that many monogenic DD genes routinely tested within paediatric genetics have intermediate penetrance and may cause lifelong milder, sub-clinical phenotypes in the general adult population.


2021 ◽  
pp. 104800
Author(s):  
Haesu Ko ◽  
Jourdyn Sammons ◽  
J. Alex Pasternak ◽  
Glenn Hamonic ◽  
Gregory Starrak ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5811
Author(s):  
Hardika Dhir ◽  
Monica Choudhury ◽  
Ketki Patil ◽  
Candice Cheung ◽  
Adriana Bodlak ◽  
...  

Deregulation of signaling pathways due to mutations sets the cell on a path to neoplasia. Therefore, recent reports of increased mutations observed in esophageal tissue reflects the enhanced risk of tumor formation. In fact, adenocarcinoma of the esophagus has been on the rise lately. Increase in mortality due to a paucity of efficacious drugs for this cancer prompted us to discover molecular signatures to combat this malady. To this end, we chose resveratrol—a polyphenol with anticancer property—and studied its impact on three esophageal adenocarcinoma cell lines (OE33, OE19 and FLO-1) by multilevel profiling. Here, we show the impact of resveratrol on the viability of the three adenocarcinoma esophageal cell systems studied, at the cellular level. Furthermore, an analysis at the molecular level revealed that the action was through the programmed cell death pathway, resulting in an increase in apoptotic and caspase-positive cells. The impact on reactive oxygen species (ROS) and a decrease in Bcl2 levels were also observed. Moreover, proteomic profiling highlighted pivotal differentially regulated signaling molecules. The phenotypic effect observed in resveratrol-treated esophageal cells could be due to the stoichiometry per se of the fold changes observed in entities of key signaling pathways. Notably, the downregulation of Ku80 and other pivotal entities by resveratrol could be harnessed for chemo-radiation therapy to prevent DNA break repair after radiation therapy. Additionally, multilevel profiling has shed light on molecular and immune-modulatory signatures with implications for discovering novel treatments, including chemo-immunotherapy, for esophageal adenocarcinomas which are known to be aggressive cancers.


2021 ◽  
Author(s):  
Kate F. Kernan ◽  
Lina Ghaloul-Gonzalez ◽  
Jerry Vockley ◽  
Janette Lamb ◽  
Debborah Hollingshead ◽  
...  

Abstract Purpose: Our understanding of inborn errors of immunity is increasing however, their contribution to pediatric sepsis is unknown. Methods: We used whole exome sequencing to characterize variants in genes related to monogenic immunologic disorders in 330 children admitted to intensive care for severe sepsis. We defined candidate variants as rare variants classified as pathogenic or potentially pathogenic in Qiagen’s Human Genetic Mutation Database or novel null variants in a disease-consistent inheritance pattern. We investigated variant correlation with infection and inflammatory phenotype. Results: More than one in two children overall and three of four African American children had immunodeficiency-associated variants. Children with variants had increased odds of isolating a blood or urinary pathogen (blood: OR 2.82, 95% CI: 1.12 – 7.10, p = 0.023, urine: OR: 8.23, 95% CI: 1.06 – 64.11, p = 0.016) and demonstrating increased inflammation with hyperferritinemia (ferritin ng/mL, OR: 2.16, 95% CI: 1.28 – 3.66, p = 0.004), lymphopenia (lymphocyte count <1000/µL, OR: 1.66, 95% CI: 1.06 – 2.60, p = 0.027), thrombocytopenia (platelet count < 150,000/µL, OR: 1.76, 95% CI: 1.12 – 2.76, p = 0.013) and CRP greater than 10mg/dL (OR: 1.71, 95%CI: 1.10 – 2.68, p = 0.017). They also had increased odds of requiring extracorporeal membrane oxygenation (ECMO, OR: 4.19, 95%CI: 1.21 – 14.5, p = 0.019).Conclusion: Herein, we describe the genetic findings in this severe pediatric sepsis cohort and their microbiologic and immunologic significance, providing evidence for phenotypic effect of these variants and rationale for screening children with life-threatening infection for potential inborn errors of immunity.


Author(s):  
Muhammad Umair ◽  
Muhammad Farooq Khan ◽  
Mohammed Aldrees ◽  
Marwan Nashabat ◽  
Kheloud M. Alhamoudi ◽  
...  

Von Willebrand A domain-containing protein 8 (VWA8), also named KIAA0564, is a poorly characterized, mitochondrial matrix-targeted protein having a putative ATPase activity. VWA8 is comprising of ATPase-associated domains and a VWFA domain associated with ATPase activity inside the cell. In the present study, we describe a large consanguineous family of Saudi origin segregating a complex developmental syndrome in an autosomal recessive fashion. All the affected individuals exhibited severe developmental disorders. DNA from three patients was subjected to whole-exome sequencing followed by Sanger sequencing. VWA8 knock-down zebrafish morpholinos were used to study the phenotypic effect of this gene on zebrafish development. A homozygous missense variant [c.947A &gt; G; p.(Asp316Gly)] was identified in exon 8 of the VWA8 gene, which perfectly segregated with the disease phenotype. Using zebrafish morpholino, we observed delayed development at an early stage, lack of movement, light sensitivity, severe skeletal deformity such as scoliosis, and facial dysmorphism. This is the first homozygous variant identified in the VWA8 gene underlying global developmental delay, microcephaly, scoliosis, limbs, and cardiovascular malformations in humans. We provide genetic and molecular evidence using zebrafish morpholino for a homozygous variant in the VWA8 gene, associated with such a complex developmental syndrome in humans.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Allison A. Dilliott ◽  
Abdalla Abdelhady ◽  
Kelly M. Sunderland ◽  
Sali M. K. Farhan ◽  
Agessandro Abrahao ◽  
...  

AbstractGenetic factors contribute to neurodegenerative diseases, with high heritability estimates across diagnoses; however, a large portion of the genetic influence remains poorly understood. Many previous studies have attempted to fill the gaps by performing linkage analyses and association studies in individual disease cohorts, but have failed to consider the clinical and pathological overlap observed across neurodegenerative diseases and the potential for genetic overlap between the phenotypes. Here, we leveraged rare variant association analyses (RVAAs) to elucidate the genetic overlap among multiple neurodegenerative diagnoses, including Alzheimer’s disease, amyotrophic lateral sclerosis, frontotemporal dementia (FTD), mild cognitive impairment, and Parkinson’s disease (PD), as well as cerebrovascular disease, using the data generated with a custom-designed neurodegenerative disease gene panel in the Ontario Neurodegenerative Disease Research Initiative (ONDRI). As expected, only ~3% of ONDRI participants harboured a monogenic variant likely driving their disease presentation. Yet, when genes were binned based on previous disease associations, we observed an enrichment of putative loss of function variants in PD genes across all ONDRI cohorts. Further, individual gene-based RVAA identified significant enrichment of rare, nonsynonymous variants in PARK2 in the FTD cohort, and in NOTCH3 in the PD cohort. The results indicate that there may be greater heterogeneity in the genetic factors contributing to neurodegeneration than previously appreciated. Although the mechanisms by which these genes contribute to disease presentation must be further explored, we hypothesize they may be a result of rare variants of moderate phenotypic effect contributing to overlapping pathology and clinical features observed across neurodegenerative diagnoses.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Khristina G. Judan Cruz ◽  
Ervee P. Landingin ◽  
Maureen B. Gajeton ◽  
Somar Israel D. Fernando ◽  
Kozo Watanabe

Abstract Background Production, marketability and consumer preference of red tilapia often depends upon the intensity of coloration. Hence, new approaches to develop coloration are now geared to improve market acceptability and profit. This study evaluated the effects of carotenoid-rich diets on the phenotypic coloration, carotenoid level, weight gain and expression of coloration-linked genes in skin, fin and muscle tissues. Carotenoids were extracted from dried Daucus carota peel, Ipomoea aquatica leaves, and Moringa oleifera leaves. Eighty (80) size-14 fish were fed with carotenoid-rich treatments twice a day for 120 days. The phenotypic effect of the carotenoid extracts was measured through a color chart. Skin carotenoid level was measured through UV-vis spectrophotometer. csf1ra, Bcdo2 and StAR expression analysis was done using qRT-PCR. Results Treatments with carotenoid extracts yielded higher overall scores on phenotypic coloration and tissue carotenoid levels. Differential expression of carotenoid-linked genes such as the elevated expression in csf1ra and lower expression in Bcdo2b following supplementation of the enhanced diet supports the phenotypic redness and increased carotenoid values in red tilapia fed with D. carota peel and I. aquatica leaves. Conclusions Overall improvement in the redness of the tilapia was achieved through the supplementation of carotenoid-rich diet derived from readily available plants. Differential expression of coloration-linked genes supports the increase in the intensity of phenotypic coloration and level of carotenoids in the tissues. The study emphasizes the importance of carotenoids in the commercial tilapia industry and highlights the potential of the plant extracts for integration and development of feeds for color enhancement in red tilapia.


Author(s):  
Zhana Chitanava ◽  
Nana Zarnadze

Anthropogenic pressure on the biosphere has become a common process of the 21st century. Among substances synthesized by humans, genotoxic agents which include pesticides are considered to be particularly dangerous. The number of pesticides used in agriculture is gradually increasing, accumulating and circulating in the biosphere. The use of pesticides is accompanied by their involvement in food chains and accumulation in individuals. They are characterized by a fairly high stress index and cause genetic changes in living organisms. Various test methods have been developed to study these issues. B. Wig and Al. Podok suggested a genetic line for soybean containing a mutation of the chlorophyll-synthesizing gene. The genetic line is characterized by a phenotypic effect. Indicator, genetic line owner soybean, diploid, heterozygous, give three phenotypically different sprouts: green (genotype Y11 Y11), lettuce-color (genotype Y11 y11) and yellow (genotype y11 y11). 1: 2: 1 ratio is observed between the sprouts. This type of ratio is typical for incomplete dominance. Through the spots detected on the leaves it is possible to study the recombinogenic and mutagenic activity in soybean induced by chemical and physical factors and to record the induced changes in somatic cell. Using these systems, we first studied the effects of pesticides karate and Bordeaux on plant growth and sprouting processes and the genetic changes induced by their influence. Both pesticides had an inhibitory effect on physiological processes, also, the frequency of direct mutations was determined by the "dose-effect" phenomenon.


Author(s):  
Dr. Y. D. Akhare ◽  
H. A. Patharikar

The fruit fly Drosophila melanogaster has been extensively studied as a model organism for genetic investigation. It also has many characteristics which make it an ideal organism for the study of animal development and behaviour, neurobiology and human genetic disease and condition. Drosophila melanogaster share several basic biological and chemical neurological and physiological similarities with mammals. In the present study, we noted the phenotypic effect of cardamom oil on the different stages of Drosophila melanogaster. The fruit flies were grown on 10-gram culture media supplemented with different concentration of cardamom oil (0.5µl, 1 µl, 2.5 µl). Further, the size and growth of different life stages of Drosophila melanogaster were observed and total protein estimated from it.The increase in the size and protein concentration in different life stages of controlled Drosophila melanogaster were recorded. Cardamom is a highly valued herbal spice used in tropical and subtropical Asia. cardamom is used as a flavouring and cooking spices in both food and drink and as a medicine.


Sign in / Sign up

Export Citation Format

Share Document