warm ionized medium
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 5)

H-INDEX

15
(FIVE YEARS 0)

2021 ◽  
Vol 922 (2) ◽  
pp. 233
Author(s):  
Stella Koch Ocker ◽  
James M. Cordes ◽  
Shami Chatterjee ◽  
Timothy Dolch

Abstract Stellar bow shocks are observed in a variety of interstellar environments and shaped by the conditions of gas in the interstellar medium (ISM). In situ measurements of turbulent density fluctuations near stellar bow shocks are only achievable with a few observational probes, including Hα-emitting bow shocks and the Voyager Interstellar Mission (VIM). In this paper, we examine density variations around the Guitar Nebula, an Hα bow shock associated with PSR B2224+65, in tandem with density variations probed by VIM near the boundary of the solar wind and ISM. High-resolution Hubble Space Telescope observations of the Guitar Nebula taken between 1994 and 2006 trace density variations over scales from hundreds to thousands of au, while VIM density measurements made with the Voyager 1 Plasma Wave System constrain variations from thousands of meters to tens of au. The power spectrum of density fluctuations constrains the amplitude of the turbulence wavenumber spectrum near the Guitar Nebula to log 10 C n 2 = − 0.8 ± 0.2 m−20/3 and for the very local ISM probed by Voyager to log 10 C n 2 = − 1.57 ± 0.02 m−20/3. Spectral amplitudes obtained from multiepoch observations of four other Hα bow shocks also show significant enhancements from values that are considered typical for the diffuse, warm ionized medium, suggesting that density fluctuations near these bow shocks may be amplified by shock interactions with the surrounding medium or selection effects that favor Hα emission from bow shocks embedded in denser media.


Author(s):  
W. D. Langer ◽  
J. L. Pineda ◽  
P. F. Goldsmith ◽  
E. T. Chambers ◽  
D. Riquelme ◽  
...  
Keyword(s):  

2020 ◽  
Vol 639 ◽  
pp. A110
Author(s):  
A. Abdullah ◽  
A. G. G. M. Tielens

In this study, we analyzed the [C II] 158 μm emission from the Orion-Eridanus region measured by the Cosmic Background Explorer. Morphologically, the [C II] emission traces prominent star-forming regions this area. The analysis takes into account five different components of the interstellar medium (ISM) that can contribute to the [C II] emission: compact H II regions, dense Photon-Dominated Region, surfaces of molecular clouds, the Warm Ionized Medium, and the Cold Neutral Medium. We estimate the contribution from each object of interest to the observed [C II] emission based upon the physical properties of the object and validate our results by making a comparison with existing “small” scale maps. Inside the ~400 parsec aperture radius that we investigate, surfaces of molecular clouds exposed to radiation from nearby stellar clusters are the dominant contributor to the observed global [C II] flux. These molecular cloud surfaces are exposed to moderate radiation fields (G0 ~ 100 times the average interstellar radiation field) and are moderately dense (nH ~ 103 cm−3). In addition, extended low-density ionized gas, along with large-scale ionized gas structures (Barnard’s Loop; λ Ori) also make a substantial contribution. The implications of this study for the analysis of extragalactic [C II] observations are assessed.


2019 ◽  
Vol 489 (4) ◽  
pp. 4862-4874
Author(s):  
L G Hou ◽  
X Y Gao

ABSTRACT Many of the Spitzer infrared bubbles identified by the Milky Way Project (MWP) are suggested to be $\rm{H \small {II}} $ regions in nature. More than 70 per cent of the ∼5000 known bubbles do not have radio recombination line (RRL) observations, hence have not been confirmed as $\rm{H \small {II}} $ regions. A systematic RRL survey should be helpful to identify the nature of the bubbles. With the Shanghai TianMa 65-m radio telescope, we searched for RRLs towards 216 selected Spitzer bubbles by simultaneously observing 19 RRLs in the C band (4–8 GHz). RRLs are detected in the directions of 75 of the 216 targets. 31 of the 75 RRL sources are classified as new detections, which are possibly from new $\rm{H \small {II}} $ regions or diffuse warm ionized medium; 36 of them are probably from the outskirts of nearby bright $\rm{H \small {II}} $ regions, rather than bubble-encircled ionized gas; and the detected RRLs towards 8 bubbles are identified from known $\rm{H \small {II}} $ regions. For 58 of the 75 RRL sources, we obtained their distances after resolving the kinematic distance ambiguity by combining the results of the H2CO absorption method, the $\rm{H \small {I}} $ emission/absorption method, and the $\rm{H \small {I}} $ self-absorption method. The low detection rate of new $\rm{H \small {II}} $ regions implies that a number of MWP bubbles in the DR1 catalogue are too faint if they are $\rm{H \small {II}} $ regions.


Galaxies ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 129 ◽  
Author(s):  
Alex Hill

Modern radio spectrometers make measurement of polarized intensity as a function of Faraday depth possible. I investigate the effect of depolarization along a model line of sight. I model sightlines with two components informed by observations: a warm ionized medium with a lognormal electron density distribution and a narrow, denser component simulating a spiral arm or Hii region, all with synchrotron-emitting gas mixed in. I then calculate the polarized intensity from 300–1800 MHz and calculate the resulting Faraday depth spectrum. The idealized synthetic observations show far more Faraday complexity than is observed in Global Magneto-Ionic Medium Survey observations. In a model with a very nearby Hii region observed at low frequencies, most of the effects of a “depolarization wall” are evident: the Hii region depolarizes background emission, and less (but not zero) information from beyond the Hii region reaches the observer. In other cases, the effects are not so clear, as significant amounts of information reach the observer even through significant depolarization, and it is not clear that low-frequency observations sample largely different volumes of the interstellar medium than high-frequency observations. The observed Faraday depth can be randomized such that it does not always have any correlation with the true Faraday depth.


2018 ◽  
Vol 617 ◽  
pp. A94 ◽  
Author(s):  
W. D. Langer ◽  
P. F. Goldsmith ◽  
J. L. Pineda ◽  
E. T. Chambers ◽  
K. Jacobs ◽  
...  

Context. Dense highly ionized boundary layers (IBLs) outside of the neutral Photon Dominated Regions (PDRs) have recently been detected via the 122 and 205 μm transitions of ionized nitrogen. These layers have higher densities than in the Warm Ionized Medium (WIM) but less than typically found in H II regions. Observations of [C II] emission, which is produced in both the PDR and IBL, do not fully define the characteristics of these sources. Observations of additional probes which just trace the PDRs, such as the fine structure lines of atomic oxygen, are needed derive their properties and distinguish among different models for [C II] and [N II] emissison. Aims. We derive the properties of the PDRs adjacent to dense highly ionized boundary layers of molecular clouds. Methods. We combine high-spectral resolution observations of the 63 μm [O I] fine structure line taken with the upGREAT HFA-band instrument on SOFIA with [C II] observations to constrain the physical conditions in the PDRs. The observations consist of samples along four lines of sight (LOS) towards the inner Galaxy containing several dense molecular clouds. We interpret the conditions in the PDRs using radiative transfer models for [C II] and [O I]. Results. We have a 3.5-σ detection of [O I] toward one source but only upper limits towards the others. We use the [O I] to [C II] ratio, or their upper limits, and the column density of C+ to estimate the thermal pressure, Pth, in these PDRs. In two LOS the thermal pressure is likely in the range 2–5 × 105 in units of K cm−3, with kinetic temperatures of order 75–100 K and H2 densities, n(H2) ~ 2–4 × 103 cm−3. For the other two sources, where the upper limits on [O I] to [C II] are larger, Pth ≲105 (K cm−3). We have also used PDR models that predict the [O I] to [C II] ratio, along with our observations of this ratio, to limit the intensity of the Far UV radiation field. Conclusions. The [C II] and [N II] emission with either weak, or without any, evidence of [O I] indicates that the source of dense highly ionized gas traced by [N II] most likely arises from the ionized boundary layers of clouds rather than from H II regions.


2017 ◽  
Vol 838 (1) ◽  
pp. 43 ◽  
Author(s):  
Dhanesh Krishnarao ◽  
L. Matthew Haffner ◽  
Robert A. Benjamin ◽  
Alex S. Hill ◽  
Kathleen A. Barger
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document