dna replication restart
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 8)

H-INDEX

8
(FIVE YEARS 1)

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0255409
Author(s):  
Alexander T. Duckworth ◽  
Tricia A. Windgassen ◽  
James L. Keck

DNA replication complexes (replisomes) frequently encounter barriers that can eject them prematurely from the genome. To avoid the lethality of incomplete DNA replication that arises from these events, bacteria have evolved “DNA replication restart” mechanisms to reload replisomes onto abandoned replication forks. The Escherichia coli PriA DNA helicase orchestrates this process by recognizing and remodeling replication forks and recruiting additional proteins that help to drive replisome reloading. We have identified a conserved sequence motif within a linker region of PriA that docks into a groove on the exterior of the PriA helicase domain. Alterations to the motif reduce the apparent processivity and attenuate structure-specific helicase activity in PriA, implicating the motif as a potential autoregulatory element in replication fork processing. The study also suggests that multiple PriA molecules may function in tandem to enhance DNA unwinding processivity, highlighting an unexpected similarity between PriA and other DNA helicases.


2020 ◽  
Vol 295 (41) ◽  
pp. 14203-14213
Author(s):  
Olga M. Mazina ◽  
Srinivas Somarowthu ◽  
Lyudmila Y. Kadyrova ◽  
Andrey G. Baranovskiy ◽  
Tahir H. Tahirov ◽  
...  

Replication protein A (RPA), a major eukaryotic ssDNA-binding protein, is essential for all metabolic processes that involve ssDNA, including DNA replication, repair, and damage signaling. To perform its functions, RPA binds ssDNA tightly. In contrast, it was presumed that RPA binds RNA weakly. However, recent data suggest that RPA may play a role in RNA metabolism. RPA stimulates RNA-templated DNA repair in vitro and associates in vivo with R-loops, the three-stranded structures consisting of an RNA-DNA hybrid and the displaced ssDNA strand. R-loops are common in the genomes of pro- and eukaryotes, including humans, and may play an important role in transcription-coupled homologous recombination and DNA replication restart. However, the mechanism of R-loop formation remains unknown. Here, we investigated the RNA-binding properties of human RPA and its possible role in R-loop formation. Using gel-retardation and RNA/DNA competition assays, we found that RPA binds RNA with an unexpectedly high affinity (KD ≈ 100 pm). Furthermore, RPA, by forming a complex with RNA, can promote R-loop formation with homologous dsDNA. In reconstitution experiments, we showed that human DNA polymerases can utilize RPA-generated R-loops for initiation of DNA synthesis, mimicking the process of replication restart in vivo. These results demonstrate that RPA binds RNA with high affinity, supporting the role of this protein in RNA metabolism and suggesting a mechanism of genome maintenance that depends on RPA-mediated DNA replication restart.


Genes ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 471 ◽  
Author(s):  
Piero R. Bianco

In Escherichia coli, DNA replication forks stall on average once per cell cycle. When this occurs, replisome components disengage from the DNA, exposing an intact, or nearly intact fork. Consequently, the fork structure must be regressed away from the initial impediment so that repair can occur. Regression is catalyzed by the powerful, monomeric DNA helicase, RecG. During this reaction, the enzyme couples unwinding of fork arms to rewinding of duplex DNA resulting in the formation of a Holliday junction. RecG works against large opposing forces enabling it to clear the fork of bound proteins. Following subsequent processing of the extruded junction, the PriA helicase mediates reloading of the replicative helicase DnaB leading to the resumption of DNA replication. The single-strand binding protein (SSB) plays a key role in mediating PriA and RecG functions at forks. It binds to each enzyme via linker/OB-fold interactions and controls helicase-fork loading sites in a substrate-dependent manner that involves helicase remodeling. Finally, it is displaced by RecG during fork regression. The intimate and dynamic SSB-helicase interactions play key roles in ensuring fork regression and DNA replication restart.


2020 ◽  
Vol 118 (3) ◽  
pp. 376a
Author(s):  
Alex L. Hargreaves ◽  
Aisha Syeda ◽  
Mark C. Leake

2018 ◽  
Vol 294 (8) ◽  
pp. 2801-2814 ◽  
Author(s):  
Tricia A. Windgassen ◽  
Maxime Leroux ◽  
Steven J. Sandler ◽  
James L. Keck

Sign in / Sign up

Export Citation Format

Share Document