fundy basin
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 1)

H-INDEX

12
(FIVE YEARS 0)

Author(s):  
James Gregory McHone ◽  
Sandra M. Barr ◽  
Fred Jourdan

A large dyke of quartz-tholeiitic gabbronorite has been mapped for 59 km in southern New Brunswick, Canada, between Lepreau River in the northeast and Indian Island in the southwest. Scattered outcrops occur along a positive aeromagnetic lineament, providing a dyke strike of N42°E overall (segments N30°E to N72°E), dips of 80° to 90°NNW, and widths of 4 to 30 m. A new 40Ar/39Ar plagioclase age of 201.67 ± 0.35 Ma for the Lepreau River Dyke is similar to dates for the massive North Mountain Basalt in the Fundy Basin to the east. The dyke is associated with the Ministers Island and Christmas Cove dykes, which are indistinguishable in chemistry, petrology, and probable age, and we regard them as segments of the same co-magmatic dyke system. In addition, their petrology is similar to that of the basalts of the adjacent Early Mesozoic Fundy and Grand Manan basins. We propose that the Lepreau River and associated dykes were sources for the regional basin basalts, which in turn are part of the Central Atlantic Magmatic Province (CAMP) that overlaps the Triassic-Jurassic boundary and associated mass extinction event.


2017 ◽  
Vol 54 (1) ◽  
pp. 33-51 ◽  
Author(s):  
Dan-Cezar Dutuc ◽  
Georgia Pe-Piper ◽  
David J.W. Piper

Jurassic and Cretaceous sandstones in the Shelburne subbasin and Fundy Basin offshore Nova Scotia, are poorly known but are of current interest for petroleum exploration. The goal of this study is to determine the provenance of sandstones and shales, which will contribute to a better understanding of regional tectonics and paleogeography in the study area. Mineral and lithic clast chemistry was determined from samples from conventional cores and cuttings from exploration wells, using scanning electron microscopy and an electron microprobe. Whole-rock geochemical composition of shales was used to test the hypotheses regarding provenance of Mesozoic clastic sedimentary rocks in the SW Scotian Basin. Lower Jurassic clastic sedimentary rocks in the Fundy Basin contain magnetite, biotite, and chlorite, suggesting local supply from the North Mountain Basalt and Meguma Terrane, whereas pyrope and anthophyllite suggest small supply from distant sources. In the SW Scotian Basin, detrital minerals, lithic clasts, and shale geochemistry from Middle Jurassic to Early Cretaceous indicate a predominant Meguma Terrane source and transport by local rivers. Rare spinel and garnet grains of meta-ultramafic rocks, only in the Middle Jurassic at the Mohawk B-93 well, suggest minor supply from the rising Labrador rift, via the same river that transported distant sediments to the Fundy Basin. Lower Cretaceous sandstones from the Mohican I-100 well contain minor garnet, spinel, and tourmaline from meta-ultramafic rocks, characteristic of sediment supplied to the central Scotian Basin at that time. The dominant Meguma Terrane provenance precludes thick deep-water sandstones in the eastern part of the Shelburne subbasin, but the evidence of Middle Jurassic distant river supply through the Fundy Basin is encouraging for deep-water reservoir quality in the western part.


2015 ◽  
Vol 51 (1) ◽  
pp. 139 ◽  
Author(s):  
Hans-Dieter Sues ◽  
Paul Eric Olsen

<p style="margin: 1em 0px; line-height: 200%; text-indent: 0.5in;"><span style="font-family: 'Minion Pro','serif'; mso-bidi-font-family: 'Times New Roman'; mso-ansi-language: EN-CA;"><span style="font-size: medium;">The Fundy basin in Nova Scotia and New Brunswick is the largest exposed rift basin of the Newark Supergroup and also extends beneath the Bay of Fundy. Its strata can be divided into four tectonostratigraphic sequences (TS). TS I is represented by the probably Permian Honeycomb Point Formation and possibly the Lepreau Formation. TS II includes the Wolfville Formation with the probably Middle Triassic Economy Member and the early Late Triassic Evangeline Member. These members have yielded markedly different assemblages of continental tetrapods. TS III comprises most of the Blomidon Formation, which is Norian to Rhaetian in age. The Blomidon Formation has yielded few skeletal remains of tetrapods to date but many tetrapod tracks. TS IV includes the late Rhaetian top of the Blomidon Formation and the McCoy Brook Formation, which overlies the North Mountain Basalt and is latest Rhaetian and earliest Jurassic (Hettangian) in age. The McCoy Brook Formation has yielded a diversity of continental tetrapods and lacks any of the characteristic Late Triassic forms. Recent work has correlated the Global Boundary Stratotype Section and Point (GSSP) for the base of the Jurassic (Hettangian) to a level well above the North Mountain Basalt. Thus most of the tetrapod fossils from the McCoy Brook Formation are latest Rhaetian in age, but the higher horizon with skeletal remains of sauropodomorph dinosaurs may be earliest Hettangian in age. The Fundy basin preserves the only known, stratigraphically tightly constrained record of the profound biotic changes in continental ecosystems across the Triassic-Jurassic transition.</span></span></p>


Sign in / Sign up

Export Citation Format

Share Document