arabidopsis proteome
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 14)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Klaas Jan van Wijk ◽  
Eric W Deutsch ◽  
Qi Sun ◽  
Zhi Sun ◽  
Tami Leppert ◽  
...  

We developed a new resource, the Arabidopsis PeptideAtlas (www.peptideatlas.org/builds/arabidopsis/), to solve central questions about the Arabidopsis proteome, such as the significance of protein splice forms, post-translational modifications (PTMs), or simply obtain reliable information about specific proteins. PeptideAtlas is based on published mass spectrometry (MS) analyses collected through ProteomeXchange and reanalyzed through a uniform processing and metadata annotation pipeline. All matched MS-derived peptide data are linked to spectral, technical and biological metadata. Nearly 40 million out of ~143 million MSMS spectra were matched to the reference genome Araport11, identifying ~0.5 million unique peptides and 17858 uniquely identified proteins (only isoform per gene) at the highest confidence level (FDR 0.0004; 2 non-nested peptides ≥ 9 aa each), assigned canonical proteins, and 3543 lower confidence proteins. Physicochemical protein properties were evaluated for targeted identification of unobserved proteins. Additional proteins and isoforms currently not in Araport11 were identified, generated from pseudogenes, alternative start, stops and/or splice variants and sORFs; these features should be considered for updates to the Arabidopsis genome. Phosphorylation can be inspected through a sophisticated PTM viewer. This new PeptideAtlas is integrated with community resources including TAIR, tracks in JBrowse, PPDB and UniProtKB. Subsequent PeptideAtlas builds will incorporate millions more MS data.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Huoming Zhang ◽  
Pei Liu ◽  
Tiannan Guo ◽  
Huayan Zhao ◽  
Dalila Bensaddek ◽  
...  

A Correction to this paper has been published: https://doi.org/10.1038/s41597-021-00852-8.


2020 ◽  
Vol 21 (10) ◽  
pp. 1257-1270 ◽  
Author(s):  
Manuel González‐Fuente ◽  
Sébastien Carrère ◽  
Dario Monachello ◽  
Benjamin G. Marsella ◽  
Anne‐Claire Cazalé ◽  
...  
Keyword(s):  

Author(s):  
Manoj Kumar ◽  
Paul Carr ◽  
Simon Turner

AbstractS-acylation is the addition of a fatty acid to a cysteine residue of a protein. While this modification may profoundly alter protein behaviour, its effects on the function of plant proteins remains poorly characterised, largely as a result to the lack of basic information regarding which proteins are S-acylated and where in the proteins the modification occurs. In order to address this gap in our knowledge, we have performed a comprehensive analysis of plant protein S-acylation from 6 separate tissues. In our highest confidence group, we identified 5185 cysteines modified by S-acylation, which were located in 4891 unique peptides from 2643 different proteins. This represents around 9% of the entire Arabidopsis proteome and suggests an important role for S-acylation in many essential cellular functions including trafficking, signalling and metabolism. To illustrate the potential of this dataset, we focus on cellulose synthesis and confirm for the first time the S-acylation of all proteins known to be involved in cellulose synthesis and trafficking of the cellulose synthase complex. In the secondary cell walls, cellulose synthesis requires three different catalytic subunits (CESA4, CESA7 and CESA8) that all exhibit striking sequence similarity. While all three proteins have been widely predicted to possess a RING-type zinc finger at their N-terminus, for CESA4 and CESA8, we find evidence for S-acylation of cysteines in this region that is incompatible with any role in coordinating metal ions. We show that while CESA7 may possess a RING type domain, the same region of CESA4 and CESA8 appear to have evolved a very different structure. Together, the data suggests this study represents an atlas of S-acylation in Arabidopsis that will facilitate the broader study of this elusive post-translational modification in plants as well as demonstrates the importance of undertaking further work in this area.


Nature Plants ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 330-330
Author(s):  
Guillaume Tena
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document