scholarly journals An atlas of Arabidopsis protein S-Acylation reveals its widespread role in plant cell organisation of and function

Author(s):  
Manoj Kumar ◽  
Paul Carr ◽  
Simon Turner

AbstractS-acylation is the addition of a fatty acid to a cysteine residue of a protein. While this modification may profoundly alter protein behaviour, its effects on the function of plant proteins remains poorly characterised, largely as a result to the lack of basic information regarding which proteins are S-acylated and where in the proteins the modification occurs. In order to address this gap in our knowledge, we have performed a comprehensive analysis of plant protein S-acylation from 6 separate tissues. In our highest confidence group, we identified 5185 cysteines modified by S-acylation, which were located in 4891 unique peptides from 2643 different proteins. This represents around 9% of the entire Arabidopsis proteome and suggests an important role for S-acylation in many essential cellular functions including trafficking, signalling and metabolism. To illustrate the potential of this dataset, we focus on cellulose synthesis and confirm for the first time the S-acylation of all proteins known to be involved in cellulose synthesis and trafficking of the cellulose synthase complex. In the secondary cell walls, cellulose synthesis requires three different catalytic subunits (CESA4, CESA7 and CESA8) that all exhibit striking sequence similarity. While all three proteins have been widely predicted to possess a RING-type zinc finger at their N-terminus, for CESA4 and CESA8, we find evidence for S-acylation of cysteines in this region that is incompatible with any role in coordinating metal ions. We show that while CESA7 may possess a RING type domain, the same region of CESA4 and CESA8 appear to have evolved a very different structure. Together, the data suggests this study represents an atlas of S-acylation in Arabidopsis that will facilitate the broader study of this elusive post-translational modification in plants as well as demonstrates the importance of undertaking further work in this area.

2013 ◽  
Vol 41 (1) ◽  
pp. 29-34 ◽  
Author(s):  
Maurine E. Linder ◽  
Benjamin C. Jennings

Protein S-palmitoylation is a reversible post-translational modification of proteins with fatty acids. In the last 5 years, improved proteomic methods have increased the number of proteins identified as substrates for palmitoylation from tens to hundreds. Palmitoylation regulates protein membrane interactions, activity, trafficking and stability and can be constitutive or regulated by signalling inputs. A family of PATs (protein acyltransferases) is responsible for modifying proteins with palmitate or other long-chain fatty acids on the cytoplasmic face of cellular membranes. PATs share a signature DHHC (Asp-His-His-Cys) cysteine-rich domain that is the catalytic centre of the enzyme. The biomedical importance of members of this family is underscored by their association with intellectual disability, Huntington's disease and cancer in humans, and raises the possibility of DHHC PATs as targets for therapeutic intervention. In the present paper, we discuss recent progress in understanding enzyme mechanism, regulation and substrate specificity.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Mohsen Sarikhani ◽  
Sneha Mishra ◽  
Sangeeta Maity ◽  
Chaithanya Kotyada ◽  
Donald Wolfgeher ◽  
...  

Glycogen synthase kinase 3 (GSK3) is a critical regulator of diverse cellular functions involved in the maintenance of structure and function. Enzymatic activity of GSK3 is inhibited by N-terminal serine phosphorylation. However, alternate post-translational mechanism(s) responsible for GSK3 inactivation are not characterized. Here, we report that GSK3α and GSK3β are acetylated at Lys246 and Lys183, respectively. Molecular modeling and/or molecular dynamics simulations indicate that acetylation of GSK3 isoforms would hinder both the adenosine binding and prevent stable interactions of the negatively charged phosphates. We found that SIRT2 deacetylates GSK3β, and thus enhances its binding to ATP. Interestingly, the reduced activity of GSK3β is associated with lysine acetylation, but not with phosphorylation at Ser9 in hearts of SIRT2-deficient mice. Moreover, GSK3 is required for the anti-hypertrophic function of SIRT2 in cardiomyocytes. Overall, our study identified lysine acetylation as a novel post-translational modification regulating GSK3 activity.


2020 ◽  
Author(s):  
Qing Wei Cheang ◽  
Shuo Sheng ◽  
Linghui Xu ◽  
Zhao-Xun Liang

AbstractPilZ domain-containing proteins constitute a superfamily of widely distributed bacterial signalling proteins. Although studies have established the canonical PilZ domain as an adaptor protein domain evolved to specifically bind the second messenger c-di-GMP, mounting evidence suggest that the PilZ domain has undergone enormous divergent evolution to generate a superfamily of proteins that are characterized by a wide range of c-di-GMP-binding affinity, binding partners and cellular functions. The divergent evolution has even generated families of non-canonical PilZ domains that completely lack c-di-GMP binding ability. In this study, we performed a large-scale sequence analysis on more than 28,000 single- and di-domain PilZ proteins using the sequence similarity networking tool created originally to analyse functionally diverse enzyme superfamilies. The sequence similarity networks (SSN) generated by the analysis feature a large number of putative isofunctional protein clusters, and thus, provide an unprecedented panoramic view of the sequence-function relationship and function diversification in PilZ proteins. Some of the protein clusters in the networks are considered as unexplored clusters that contain proteins with completely unknown biological function; whereas others contain one, two or a few functionally known proteins, and therefore, enabling us to infer the cellular function of uncharacterized homologs or orthologs. With the ultimate goal of elucidating the diverse roles played by PilZ proteins in bacterial signal transduction, the work described here will facilitate the annotation of the vast number of PilZ proteins encoded by bacterial genome and help to prioritize functionally unknown PilZ proteins for future studies.ImportanceAlthough PilZ domain is best known as the protein domain evolved specifically for the binding of the second messenger c-di-GMP, divergent evolution has generated a superfamily of PilZ proteins with a diversity of ligand or protein-binding properties and cellular functions. We analysed the sequences of more than 28,000 PilZ proteins using the sequence similarity networking (SSN) tool to yield a global view of the sequence-function relationship and function diversification in PilZ proteins. The results will facilitate the annotation of the vast number of PilZ proteins encoded by bacterial genomes and help us prioritize PilZ proteins for future studies.


2008 ◽  
Vol 36 (5) ◽  
pp. 874-878 ◽  
Author(s):  
Denis Tempé ◽  
Marc Piechaczyk ◽  
Guillaume Bossis

During the last decade, SUMOylation has emerged as a central regulatory post-translational modification in the control of the fate and function of proteins. However, how SUMOylation is regulated itself has just started to be delineated. It appears now that SUMO (small ubiquitin-related modifier) conjugation/deconjugation equilibrium is affected by various environmental stresses, including osmotic, hypoxic, heat, oxidative and genotoxic stresses. This regulation occurs either at the level of individual targets, through an interplay between stress-induced phosphorylation and SUMOylation, or via modulation of the conjugation/deconjugation machinery abundance or activity. The present review gives an overview of the connections between stress and SUMOylation, the underlying molecular mechanisms and their effects on cellular functions.


2020 ◽  
pp. jbc.RA120.015162
Author(s):  
Lee D. Harris ◽  
Janic Le Pen ◽  
Nico Scholz ◽  
Juliusz Mieszczanek ◽  
Natalie Vaughan ◽  
...  

Ubiquitin is a versatile post-translational modification which is covalently attached to protein targets either as a single moiety or as a ubiquitin chain. In contrast to K48 and K63-linked chains which have been extensively studied, the regulation and function of most atypical ubiquitin chains is only starting to emerge. The deubiquitinase TRABID/ZRANB1 is tuned for the recognition and cleavage of K29 and K33-linked chains. Yet, substrates of TRABID and the cellular functions of these atypical ubiquitin signals remain unclear. We determined the interactome of two TRABID constructs rendered catalytic dead either through a point mutation in the catalytic cysteine residue or through removal of the OTU catalytic domain. We identified 50 proteins trapped by both constructs and which therefore represent candidate substrates of TRABID. We then validated the E3 ubiquitin ligase HECTD1 as a substrate of TRABID and used UbiCREST and Ub-AQUA proteomics to show that HECTD1 preferentially assembles K29- and K48-linked ubiquitin chains. Further in vitro autoubiquitination assays using ubiquitin mutants established that while HECTD1 can assemble short homotypic K29 and K48-linked chains, it requires branching at K29/K48 in order to achieve its full ubiquitin ligase activity. We next used transient knockdown and genetic knock out of TRABID in mammalian cells in order to determine the functional relationship between TRABID and HECTD1. This revealed that upon TRABID depletion, HECTD1 is readily degraded. Thus, this study identifies HECTD1 as a mammalian E3 ligase which assembles branched K29/K48 chains and also establishes TRABID-HECTD1 as a DUB/E3 pair regulating K29 linkages.


Impact ◽  
2018 ◽  
Vol 2018 (3) ◽  
pp. 89-91
Author(s):  
Shin-ichi Tate

The field of molecular biology has provided great insights into the structure and function of key molecules. Thanks to this area of research, we can now grasp the biological details of DNA and have characterised an enormous number of molecules in massive data bases. These 'biological periodic tables' have allowed scientists to connect molecules to particular cellular events, furthering scientific understanding of biological processes. However, molecular biology has yet to answer questions regarding 'higher-order' molecular architecture, such as that of chromatin. Chromatin is the molecular material that serves as the building block for chromosomes, the structures that carry an organism's genetic information inside of the cell's nucleus. Understanding the physical properties of chromatin is crucial in developing a more thorough picture of how chromatin's structure relate to its key cellular functions. Moreover, by establishing a physical model of chromatin, scientists will be able to open the doors into the true inner workings of the cell nucleus. Professor Shin-ichi Tate and his team of researchers at Hiroshima University's Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), are attempting to do just that. Through a five-year grant funded by the Platform for Dynamic Approaches to Living Systems from the Ministry of Education, Culture, Sports, Science and Technology, Tate is aiming to gain a clearer understanding of the structure and dynamics of chromatin.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1960
Author(s):  
K. Tanuj Sapra ◽  
Ohad Medalia

The cytoskeleton of the eukaryotic cell provides a structural and functional scaffold enabling biochemical and cellular functions. While actin and microtubules form the main framework of the cell, intermediate filament networks provide unique mechanical properties that increase the resilience of both the cytoplasm and the nucleus, thereby maintaining cellular function while under mechanical pressure. Intermediate filaments (IFs) are imperative to a plethora of regulatory and signaling functions in mechanotransduction. Mutations in all types of IF proteins are known to affect the architectural integrity and function of cellular processes, leading to debilitating diseases. The basic building block of all IFs are elongated α-helical coiled-coils that assemble hierarchically into complex meshworks. A remarkable mechanical feature of IFs is the capability of coiled-coils to metamorphize into β-sheets under stress, making them one of the strongest and most resilient mechanical entities in nature. Here, we discuss structural and mechanical aspects of IFs with a focus on nuclear lamins and vimentin.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 336
Author(s):  
Roberta Melchionna ◽  
Paola Trono ◽  
Annalisa Tocci ◽  
Paola Nisticò

Human tissues, to maintain their architecture and function, respond to injuries by activating intricate biochemical and physical mechanisms that regulates intercellular communication crucial in maintaining tissue homeostasis. Coordination of the communication occurs through the activity of different actin cytoskeletal regulators, physically connected to extracellular matrix through integrins, generating a platform of biochemical and biomechanical signaling that is deregulated in cancer. Among the major pathways, a controller of cellular functions is the cytokine transforming growth factor β (TGFβ), which remains a complex and central signaling network still to be interpreted and explained in cancer progression. Here, we discuss the link between actin dynamics and TGFβ signaling with the aim of exploring their aberrant interaction in cancer.


2021 ◽  
Vol 22 (5) ◽  
pp. 2501
Author(s):  
Sonja Hinz ◽  
Dominik Jung ◽  
Dorota Hauert ◽  
Hagen S. Bachmann

Geranylgeranyltransferase type-I (GGTase-I) represents an important drug target since it contributes to the function of many proteins that are involved in tumor development and metastasis. This led to the development of GGTase-I inhibitors as anti-cancer drugs blocking the protein function and membrane association of e.g., Rap subfamilies that are involved in cell differentiation and cell growth. In the present study, we developed a new NanoBiT assay to monitor the interaction of human GGTase-I and its substrate Rap1B. Different Rap1B prenylation-deficient mutants (C181G, C181S, and ΔCQLL) were designed and investigated for their interaction with GGTase-I. While the Rap1B mutants C181G and C181S still exhibited interaction with human GGTase-I, mutant ΔCQLL, lacking the entire CAAX motif (defined by a cysteine residue, two aliphatic residues, and the C-terminal residue), showed reduced interaction. Moreover, a specific, peptidomimetic and competitive CAAX inhibitor was able to block the interaction of Rap1B with GGTase-I. Furthermore, activation of both Gαs-coupled human adenosine receptors, A2A (A2AAR) and A2B (A2BAR), increased the interaction between GGTase-I and Rap1B, probably representing a way to modulate prenylation and function of Rap1B. Thus, A2AAR and A2BAR antagonists might be promising candidates for therapeutic intervention for different types of cancer that overexpress Rap1B. Finally, the NanoBiT assay provides a tool to investigate the pharmacology of GGTase-I inhibitors.


Sign in / Sign up

Export Citation Format

Share Document